рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

1.0x1 + 0.2x2 + 2.5x3   1.0x4  9.9

Будем делать округление чисел до четырех знаков после десятичной точки.

Прямой ход. 1-ый шаг. Вычислим множители:

m =  =  = 0.2; m =  =  = 0.15;  m =  =  = 0.5.

Вычитая из второго, третьего и четвертого уравнений системы (3.10) первое уравнение, умноженное соответственно на m, m, m, получим новую систему:

2.0x1 + 1.0x2   0.1x3 + 1.0x4  2.7

0.3x24.02x3   8.70x4  21.36

1.15x2 + 1.015x3 + 5.05x4 = 4.305                                                    (3. 11)

0.30x2 + 2.55x3   1.50x4  8.55


2-ой шаг. Вычислим множители:

m =  =  =  – 3.83333;     m =  =  = –1.0.

Вычитая из третьего и четвертого уравнений системы (3.11) второе уравнение, умноженное соответственно на m и m, приходим к системе:

2.0x1 + 1.0x2   0.1x3 + 1.0x4  2.7

0.3x24.02x3   8.70x4  21.36

16. 425x3   28.300x4  = 77.575                                                       (3.12)

6.570x3   10.200x4  29.910

3-ий шаг. Вычислим множитель:

m =  =  = 0.4.

Вычитая из четвертого уравнения системы (3.12) третье, умноженное на m, приведем систему к треугольному виду:

2.0x1 + 1.0x2  –     0.1x3 +        1.0x4  2.7

0.3x24.02x3       8.70x4  21.36

16. 425x3   28.300x4  = 77.575                                                        (3.13)

1.12x4  =  1.12

Обратный ход. Из последнего уравнения системы (3.13) находим x4  =  1.000. Подставляя значение x4   в третье уравнение, получим x3 = 2.000. Подставляя найденные значения x4  и x3 во второе уравнение, найдем x2 = 3.000. Наконец, из первого уравнения, подставив в него найденные значения x4, x3 и x2, вычислим x1 = 1.000.

Итак система (3.10) имеет следующее решение:

x1 = 1.000, x2 = 2.000, x3 = 3.000, x4  =   – 1.000.

3.3 Метод исключения Гаусса с выбором главного элемента по столбцу

Хотя метод Гаусса является точным методом, ошибки округления могут привести к существенным погрешностям результата. Кроме того исключение по формулам (3.7) нельзя проводить, если элемент главной диагонали a равен нулю. Если элемент a мал, то велики ошибки округления при делении на этот элемент. Для уменьшения ошибок округления применяют метод исключения Гаусса с выбором главного элемента по столбцу. Прямой ход так же, как и для схемы единственного деления, состоит из n – 1 шагов. На первом шаге прежде, чем исключать переменную x1, уравнения переставляются так, чтобы в левом верхнем углу был наибольший по модулю коэффициент ai1, i =  1, 2, …, n. В дальнейшем, на k-м шаге, прежде, чем исключать переменную xk, уравнения переставляются так, чтобы в левом верхнем углу был наибольший по модулю коэффициент aik, i = k, k + 1, …, n. После этой перестановки исключение переменной xk производят, как в схеме единственного деления.

Трудоемкость метода. Дополнительные действия по выбору главных элементов требуют примерно n2 операций, что практически не влияет на общую трудоемкость метода.

Пример 3.2.

Применим метод исключения Гаусса с выбором главного элемента по столбцу для решения системы уравнений (3.10) из примера 3.1. Прямой ход. 1-ый шаг. Так как коэффициент a11 = 2.0 наибольший из коэффициентов первого столбца, перестановки строк не требуется и 1-ый  шаг полностью совпадает с 1-ым шагом примера 3.1.  Из второго, третьего и четвертого уравнений исключается переменная x1 и система приводится к виду (3.11).

2-ой шаг. Наибольший по модулю коэффициент при x2 в системе (3.11) a = 1.15. Поэтому переставим уравнения следующим образом:

2.0x1 + 1.0x2  –      0.1x3 +      1.0x4  2.7

1.15x2 + 1.015x3 + 5.05x4 = 4.305                                             (3.14)

0.3x2 +   4.02x3  –   8.70x4  21.36

0.30x2 +   2.55x3     1.50x4  8.55

Вычислим множители:

m =  =  =  –0.26087     m =  =  = 0.26087.

Вычитая из третьего и четвертого уравнений системы (3.14) второе уравнение, умноженное соответственно на m и m, приходим к системе:

2.0x1 + 1.0x2   0.1x3 + 1.0x4  2.7

1.15x2 + 1.015x3 + 5.05x4 = 4.305                                             (3.15)

4.28478x3  –  7.38261x4  20.23696

2.28522x3    2.81739x4  9.67305

3-ий шаг. Вычислим множитель:

m =  =  = 0.53333.

Вычитая из четвертого уравнения системы (3.15) третье, умноженное на m, приведем систему к треугольному виду:

2.0x1 + 1.0x2  0.1x3 + 1.0x4  2.7

1.15x2 + 1.015x3 + 5.05x4 = 4.305                                            (3.16)

4.28478x3  –  7.38261x4  20.23696

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости