рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

Пример 4.5.

Оценим погрешность приближения функции f(x) =  в точке x = 116  и на всем отрезке [a, b], где a = 100, b = 144, с помощью интерполяционного много члена Лагранжа L2(x) второй степени, построенного с узлами x0 = 100, x2 = 144.

Найдем первую, вторую и третью производные функции f(x):

f '(x)= x – 1/2,   f "(x)= – x –3/2,    f'''(x)= x –5/2.

M3 = | f'''(x)| =  100 –5/2 =  10 –5.

В соответствии с (4.9) получим оценку погрешности в точке x = 116:

| –  L2(116)| £ |(116 – 100)(116 – 121)(116 – 144)| = 10 –5×16×5×28 = 1.4×10 – 3.

Оценим погрешность приближения функции f(x) =  на всем отрезке в соответствии с (4.11):

| – L2(x)| £ |(x – 100)(x – 121)(x –144)| » 2.5×10–3.

4.4 Аппроксимация функций. Метод наименьших квадратов

В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi, yi), i = 0, 1, 2,... , n, где n –  общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности (рис. 2.5)

Рис.4.2

При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы "сгладить" экспериментальные погрешности, вычислять значения функции в точках, не содержащихся в исходной таблице.

Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость f(x), при которой

S =,                                                              (4.12)

обращается в минимум.

Погрешность приближения оценивается величиной среднеквадратического уклонения

D = .                                                                              (4.13)

В качестве функциональной зависимости рассмотрим многочлен

Pm(x)=a0 + a1x + a2x2+...+amxm.                                                  (4.14)

Формула (4.12) примет вид

S =

Условия минимума S можно записать, приравнивая нулю частные производные S по  всем переменным a0,  a1,  a2, … , am. Получим систему уравнений

 =  –= 0, или

= 0,    k = 0, 1, … , m.                 (4.15) 

Систему уравнений (4.15) перепишем в следующем виде:


a0+ a1+ … +am= , k = 0, 1, … , m     (4.16)

Введем обозначения:

ck = , bk = .

Система (4.16) может быть записана так:

a0ck + a1ck+1 + … + ck+mam = bk, k = 0, 1, … , m.                                   (4.17)

Перепишем систему (4.17) в развернутом виде:


  c0a0 + c1a1 + c2a2… + cmam = b0

  c1a0 + c2a1 + c3a2… + cm+1am  = b1

(4.18)

cma0 + cm+1a1 + cm+2a2… + c2mam  = bm

Матричная запись системы (4.18) имеет следующий вид:

Ca = b.                                                                                          (4.19)

Для определения коэффициентов ak, k = 0, 1, … , m, и, следовательно, искомого многочлена (4.14) необходимо вычислить суммы ck, bk и решить систему уравнений (4.18). Матрица  C системы (4.19) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при решении.

Погрешность приближения в соответствии с формулой (4.13) составит


D = .                                                                (4.20)

Рассмотрим частные случаи m =1 и m = 2.

1. Линейная аппроксимация (m = 1).

P1(x) = a0 + a1x.

c0 = = n + 1; c1 = = ; c2 = ;                         (4.21)

b0 = = ; b1 = = .                                  (4.22)

           c0           c1                         n+1        

C =                             =                                      ,

           c1               c2                                   

b = (b0, b1)T = (,)T.

Решение системы уравнений  Ca = b найдем по правилу Крамера:

a0 = , a1 = ,

где úCú  –  определитель матрицы C, аúCiú – определитель матрицы Ci, полученной из матрицы C заменой i-го столбца столбцом свободных членов b, i = 1, 2.

Таким образом,

a0 = a1 = .                                                    (4.23)

Алгоритм 4.1 (Алгоритм метода наименьших квадратов. Линейная аппроксимация).

Шаг 1. Ввести исходные данные: xi, yi, i=0, 1, 2, ... , n.

Шаг 2. Вычислить коэффициенты c0,  c1, b0, b1 по формулам (4.21), (4.22).

Шаг 3. Вычислить a0, a1 по формулам (4.23).

Шаг 4. Вычислить величину погрешности

D1 = .                                                          (4.24)

Шаг 5. Вывести на экран результаты: аппроксимирующую линейную функцию P1(x) = a0 + a1x и величину погрешности D1.

2. Квадратичная аппроксимация (m = 2).

P2(x) = a0 + a1x + a2x2.

c0 == n+1; c1 ==; c2 =; c3 =; c4 =.  (4.25)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости