рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

2.6 Метод секущих (метод хорд)

В этом и следующем разделе рассмотрим модификации метода Ньютона.

Как видно из формулы (2.13), метод Ньютона требует для своей реализации вычисления производной, что ограничивает его применение. Метод секущих лишен этого недостатка. Если производную заменить ее приближением:

f '(xn) » ,

то вместо формулы (2.13) получим

xn +1 = xn –. .     (2.20)

Это означает, что касательные заменены секущими. Метод секущих является двухшаговым методом, для вычисления приближения xn +1  необходимо вычислить два предыдущих приближения  xn и xn – 1 , и, в частности, на первой итерации надо знать два начальных значения x0 и x1.

Формула (2.20) является расчетной формулой метода секущих. На рис. 2.9 приведена геометрическая иллюстрация метода секущих.

Рис. 2.9

Очередное приближение xn +1 получается как точка пересечения с осью OX секущей, соединяющей точки графика функции f(x)  с координатами (xn -1, f(xn - 1)) и (xn , f(xn)).

Сходимость метода. Сходимость метода секущих устанавливает следующая теорема.

 

Теорема 2.4 Пусть x*  – простой корень уравнения  f(x) = 0, и в некоторой окрестности этого корня функция f дважды непрерывно дифференцируема, причем f"(x) ¹ 0. Тогда найдется такая малая s-окрестность корня x*, что при произвольном выборе начальных приближений x0 и x1 из этой окрестности итерационная последовательность, определенная по формуле (2.20) сходится и справедлива оценка:

|xn + 1 – x*| £ C |xn – x*| p,    n ³  0,  p =  » 1.618.                       (2.21)

Сравнение оценок (2.15) и (2.21) показывает, что p < 2, и метод секущих сходится медленнее, чем метод Ньютона. Но в методе Ньютона на каждой итерации надо вычислять и функцию, и производную, а в методе секущих – только функцию. Поэтому при одинаковом объеме вычислений в методе секущих можно сделать примерно вдвое больше итераций и получить более высокую точность.

Так же, как и метод Ньютона, при неудачном выборе начальных приближений (вдали от корня) метод секущих может расходиться.  Кроме того применение метода секущих осложняется из-за того, что в знаменатель расчетной формулы метода (2.20) входит разность значений функции. Вблизи корня эта разность мала, и метод теряет устойчивость.

Критерий окончания. Критерий окончания итераций метода секущих такой же, как и для метода Ньютона. При заданной точности e > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство

|xn – xn – 1| < e.                                                                                           (2.22)

Пример 2.4.

Применим метод секущих для вычисления положительного корня уравнения 4(1 – x2) – ex = 0 с точностью e = 10-3.

Корень этого уравнения находится на отрезке [0, 1], так как f (0) = 3 > 0, а f (1) =  –e  < 0. Подсчитаем вторую производную функции: f "(x) = 8 ex. Условие f(x)f " (x) ³ 0 выполняется для точки b = 1. В качестве начального приближения возьмем x0 = b = 1. В качестве второго начального значения возьмем x1 = 0.5. Проведем вычисления по расчетной формуле (2.20). Результаты приведены в табл. 2.4.

Таблица 2.4

n

xn

0

1

2

3

4

5

1.0000

0.5000

0.6660

0.7093

0.7033

0.7034

2.7 Метод ложного положения

Рассмотрим еще одну модификацию метода Ньютона.

Пусть известно, что простой корень  x*  уравнения  f(x) = 0 находится на отрезке [a, b] и на одном из концов отрезка выполняется условие f(x)f"(x) ³ 0. Возьмем  эту точку в качестве начального приближения. Пусть для определенности это будет b. Положим x0 = a. Будем проводить из точки B = (b, f(b)) прямые через расположенные на графике функции точки Bn с координатами (xn, f(xn), n = 0, 1, … . Абсцисса точки пересечения такой прямой с осью OX есть очередное приближение xn+1.

Геометрическая иллюстрация метода приведена на рис. 2.10.

Рис. 2.10


Прямые на этом рисунке заменяют касательные в методе Ньютона (рис. 2.8). Эта замена основана на приближенном равенстве

f '(xn) » .                                                                        (2.23)

Заменим в расчетной формуле Ньютона (2.13) производную f '(xn) правой частью приближенного равенства (2.23). В результате получим расчетную формулу метода ложного положения:

xn +1 = xn –..                                                                   (2.24)

Метод ложного положения обладает только линейной сходимостью. Сходимость тем выше, чем меньше отрезок [a, b].

Критерий окончания. Критерий окончания итераций метода ложного положения такой же, как и для метода Ньютона. При заданной точности e > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство

|xn – xn – 1| < e.                                                                                     (2.25)

Пример 2.5.

Применим метод ложного положения  для вычисления корня уравнения x3 + 2x – 11 = 0 с точностью e = 10-3.

Корень этого уравнения находится на отрезке [1, 2], так как f (1) =  –8 < 0, а f (2) = 1 > 0. Для ускорения сходимости возьмем более узкий отрезок [1.9, 2], поскольку f (1.9)  < 0, а f (2) > 0. Вторая производная функции f (x) = x3 + 2x – 11 равна 6x. Условие f(x)f"(x) ³ 0 выполняется для точки b = 2. В качестве начального приближения возьмем x0 = a = 1.9. По формуле (2.24) имеем

x1 = x0 –. = 1.9 +  » 1.9254.

Продолжая итерационный процесс, получим результаты, приведенные в табл. 2.5.

Таблица 2.5

n

xn

0

1

2

3

1.9

1.9254

1.9263

1.9263


Тема 3. Решение систем линейных алгебраических уравнений

3.1 Постановка задачи

Требуется найти решение системы линейных уравнений:

a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

a21x1 + a22 x2 + a23x3 + … + a2nxn = b2

a31x1 + a32 x2 + a33x3 + … + a3nxn = b3                                              (3.1)

.

an1x1 + an2 x2 + an3x3 + … + annxn = bn

или в матричной форме:

Ax = b,                                                                                               (3.2)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости