рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

В основу Maple положен алгоритмический язык высокого уровня, предназначенный для реализации обычного процедурного программирования. Maple-язык "понимает" все стандартные объекты типа циклов (while, for), операторов условного перехода (if-then-else), массивов (array), списков (list), наборов (set), таблиц и т.д. Есть также возможность работы с файлами, что позволяет строить системы, состоящие из множества модулей, подгружая необходимые процедуры в процессе выполнения программы, а также реализовывать ввод и вывод больших объемов данных. Реализованы также все стандартные процедуры обработки строковой информации.

Применение Maple в образовании способствует повышению фундаментальности математического образования и сближает нашу образовательную систему с западной.

Лабораторные работы предполагают использование встроенных функций Maple, позволяющих решать основные задачи курса "Вычислительные методы".

В задачах используется параметр n – номер студента в списке группы.


Лабораторная работа №1.

Решение нелинейных уравнений и систем линейных уравнений.

Используемые функции: solve, fsolve,  plot.

1. Найти точное решение уравнения:5x2+2x n = 0.

2. Найти приближенное решение этого же уравнения.

3. Построить график левой части уравнения.

4. Найти приближенное решение уравнения x2ex n = 0.

5. Построить график левой части уравнения.

6. Найти точное решение системы уравнений.

2x1 + 6x2   – x3 = –12 + n

5x1 –  x2 + 2x3 =   29 + n

–3x1 – 4x2 +  x3 =     5 + n

7. Найти приближенное решение этой же системы уравнений.

Лабораторная работа №2.

Построение интерполяционных многочленов.

Используемые функции: interp, plot, subs.        

1. Найти приближение функции, заданной в точках, многочленом, значения которого совпадают со значениями функции в указанных точках.

x      1          3         5         7         9    

  0+n     4+n     2+n     6+n     8+n

2. Построить график полученного интерполяционного многочлена .

3. Найти значение функции в точке x = 6.


Лабораторная работа №3

Вычисление определенных интегралов.

Используемые функции: int, plot, evalf.

1. Найти аналитическое выражение для неопределенного интеграла .

2. Построить графики найденного интеграла - красным цветом и подинтегральной функции - синим цветом.

3. Вычислить значение этого интеграла в пределах от 2 до n + 2:

4. Вычислить приближенное значение интеграла .

Лабораторная работа №4

Решение обыкновенных дифференциальных уравнений.

Используемые функции: dsolve, plot, odeplot, op, with.

1. Найти аналитическое решение задачи Коши: y'(t) = (1/n)(t + y), y(0) = n.

2. Построить график найденного решения на отрезке [0, n].

3. Найти численное решение задачи Коши y'(t) = sin(ny(t))+t2),  y(0) = n  в точках t = 1 и t = 2.

4. Построить график найденного решений на отрезке [0, 5].

Указания к выполнению курсовых работ

Цель курсовой работы – приобретение студентами практического опыта реализации на ЭВМ алгоритмов численных методов  для конкретных задач. Язык программирования выбирает студент.

Требования к выполнению курсовой работы

Результаты курсовой работы оформляются в виде отчета. Отчет по курсовой работе должен содержать следующие разделы:

1. Постановка задачи.

2. Описание математического метода.

3. Описание алгоритма реализации математического метода в виде блок-схемы или по шагам.

4. Листинг программы.

5. Контрольный пример. Анализ полученных результатов.

Темы курсовых работ

Решение нелинейных уравнений

Указание. В курсовых работах 1 – 10 необходимо проанализировать два предложенных метода решения нелинейных уравнений, написать алгоритмы и программы этих методов. С помощью этих программ решить контрольный пример, предварительно локализовав корни уравнения (п. 2.2). Дать сравнительный анализ полученных результатов.

1. Решение нелинейных уравнений методом деления отрезка пополам и методом  простых итераций.

Контрольный пример. Найти один действительный корень уравнения x5 x –  1 = 0 с точностью e  = 10-5.

Указание. При применении метода простых итераций преобразовать исходное уравнение так, чтобы итерационный процесс сходился (п. 2.4).

2. Решение нелинейных уравнений методом деления отрезка пополам и методом секущих.

Контрольный пример. Найти три корня уравнения x3 – 4x2 + 2 = 0  с точностью e  = 10-5.

3. Решение нелинейных уравнений методом деления отрезка пополам и методом Ньютона.

Контрольный пример. Найти три корня уравнения x3 + 3x2 – 1 = 0  с точностью e  = 10-5.

4. Решение нелинейных уравнений методом деления отрезка пополам и методом ложного положения.

Контрольный пример. Найти три корня уравнения x3 + 3x2 – 1 = 0  с точностью e  = 10-5.

5. Решение нелинейных уравнений методом  простых итераций и методом Ньютона.

Контрольный пример. Найти один действительный корень уравнения  x = 0.5 с точностью e  = 10-5.

6. Решение нелинейных уравнений методом  простых итераций и методом секущих.

Контрольный пример. Найти один действительный корень уравнения  x = 0.5 с точностью e  = 10-5.

7. Решение нелинейных уравнений методом  простых итераций и методом ложного положения.

Контрольный пример. Найти один действительный корень уравнения  x = 0.5 с точностью e  = 10-5.

8. Решение нелинейных уравнений методом секущих и методом Ньютона.

Контрольный пример. Найти три корня уравнения x3 + 3x2 – 3 = 0 с точностью e  = 10-5.

9. Решение нелинейных уравнений методом Ньютона и методом ложного положения.

Контрольный пример. Найти три корня уравнения x3 + x2 – 10x +8 = 0 с точностью e  = 10-5.

10. Решение нелинейных уравнений методом секущих и методом ложного положения.

Контрольный пример. Найти три корня уравнения x3 – x2 – 4x +4 = 0 с точностью e  = 10-5.

Решение систем линейных алгебраических уравнений

11. Решение системы линейных алгебраических уравнений простым методом исключения Гаусса.

Контрольный пример. Решить систему уравнений

2.1x1  4.5x2   2.0x3   =  19.07

3.0x1 + 2.5x24.3x3  3.21

6.0x1  + 3.5x2 + 2.5x3  =  18.25

12. Решение системы линейных алгебраических уравнений  методом исключения Гаусса с выбором главного элемента по столбцу

Контрольный пример. Решить систему уравнений

1.00x1 + 0.42x2  +  0.54x30.66x4  0.3

0.42x1 + 1.00x20.32x3  +  0.44x4 0.5

0.54x1  + 0.32x2 + 1.00x30.22x4  0.7

0.66x1 + 0.22x2 + 1.00x3   1.0x4  0.9

13. Решение системы линейных алгебраических уравнений методом простых итераций Якоби.

Контрольный пример. Решить систему уравнений с точностью e  = 10-5.

3.0x1  + 0.5x2  + 0.5x3 56.65

0.5x1  6.0x20.5x3 = 160

0.5x1  + 0.5x2  3.0x3  =  210


14. Решение системы линейных алгебраических уравнений методом Зейделя.

Контрольный пример. Решить систему уравнений с точностью e  = 10-5.

10x1  + 2x2  + x3 10

x1 + 10x22x3 = 12

x1  + x2  + 10x3  =  8

15. Вычисление определителя методом исключения Гаусса.

Контрольный пример. Вычислить определитель

det A = 3.0    1.5    0.1    1.0

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости