рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

a0 » –2.20, a1 » 1.27, a2 » 0.07.

P2(x) = a0 + a1x + a2x2 = –2.20 + 1.27x + 0.07x2.

Сравним значения, рассчитанные для функциональной зависимости, с исходными данными. Результаты приведены в табл.2.4.

Таблица 4.2

i

0 1 2 3 4

xi

1 2 3 4 5

yi

–1 1 2 4 6

P1(xi)

–1 0.7 2.4 4.1 5.8

P2(xi)

–1 0.62 2.24 4 6.9

Погрешность приближения в соответствии с формулами (4.24) и (4.32) составит

D1 =  = 0.245.

D2 =  = 0.084.


Тема 5. Численное интегрирование функций одной переменной

5.1 Постановка задачи численного интегрирования

Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона – Лейбница:

I == F(b) – F(a),                                (5.1)

где F(x) – первообразная функции f(x). Например, в элементарных функциях не выражается интеграл . Но даже в тех случаях, когда удается выразить первообразную функцию F(x) через элементарные функции, она может оказаться очень сложной для вычислений. Кроме того, точное значение интеграла по формуле (5.1) нельзя получить, если функция f(x) задается таблицей. В этих случаях обращаются к методам численного интегрирования.

Суть численного интегрирования заключается в том, что подынтегральную функцию f(x) заменяют другой приближенной функцией, так, чтобы, во-первых, она была близка к f(x) и, во вторых, интеграл от нее легко вычислялся. Например, можно заменить подынтегральную функцию интерполяционным многочленом. Широко используют квадратурные формулы:

» ,                                                                                  (5.2)

где xi – некоторые точки на отрезке [a, b],называемые узлами квадратурной формулы, Ai – числовые коэффициенты, называемые весами квадратурной формулы, n ³ 0 – целое число.

5.2 Метод прямоугольников

Формулу  прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл  как площадь криволинейной трапеции, ограниченной графиком функции y = f(x), осью абсцисс и прямыми x = a и x = b (рис. 5.1).

Рис. 5.1

Разобьем отрезок [a, b] на n равных частей длиной h, так, что h = . При этом получим точки a = x0 < x1< x2 < … < xn = b и  xi+1 = xi  + h, i = 0, 1, … , n – 1 (рис. 5.2)

Рис. 5.2

Заменим приближенно площадь криволинейной трапеции площадью ступенчатой фигуры, изображенной на рис. 5.3.

Рис. 5.3

Эта фигура состоит из n прямоугольников. Основание i-го прямоугольника образует отрезок [xi, xi+1] длины h, а высота основания равна значению функции в середине отрезка [xi, xi+1],  т е. f(рис. 5.4).

Рис. 5.4

Тогда получим квадратурную формулу средних прямоугольников:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости