рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

Уравнение (6.10) есть уравнение Бернулли. Его решение можно найти в явном виде:

y = .                                                                                        (6.11)

Для сравнения точного и приближенного решений представим точное решение (6.11) в виде таблицы 6.2:

Таблица 6.2

i

0 1 2 3 4 5

ti

0 0.2 0.4 0.6 0.8 1.0

y(ti)

1.0000 1.1832 1.3416 1.4832 1. 6124 1.7320

Из таблицы видно, что погрешность составляет R = | y(ti) –  yi| = 0.0917.

6.3 Модифицированные методы Эйлера

Первый модифицированный метод Эйлера. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения искомой функции y  в точках t = ti +  с помощью формулы:

y = yi +  fi  = yi +f(ti, yi).

Затем находится значение правой части уравнения (6.1) в средней точке

f = f(t, y)

и затем полагается

yi+1 = yi + h f,          i = 0, 1, …, n – 1.                                     (6.12)

Формулы (6.12) являются расчетными формулами первого модифицированного метода Эйлера.

Первый модифицированный метод Эйлера является одношаговым методом со вторым порядком точности

Второй модифицированный метод Эйлера – Коши. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения

 = yi + h f(ti, yi).                                                                               (6.13)

Затем приближения искомого решения находятся по формуле:

yi+1 = yi + [f(ti, yi) + f(ti+1, )],   i = 0, 1, …, n – 1.                           (6.14)

Формулы (6.14) являются расчетными формулами второго модифицированного метода Эйлера – Коши.

Второй модифицированный метод Эйлера – Коши, так же, как и первый,  является одношаговым методом со вторым порядком точности.

Оценка погрешности. Приближенная оценка погрешности модифицированных методов Эйлера осуществляется как и для простого метода Эйлера с использованием правила Рунге (см. предыдущий раздел 6.2). Так как оба модифицированных метода Эйлера имеют второй порядок точности, т. е. p = 2, то оценка погрешности (6.6) примет вид

R  » |y- y|.                                                                                       (6.15)

Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши модифицированными методами Эйлера с заданной точностью e.  Нужно, начав вычисления с некоторого значения шага h, последовательно уменьшать это значение в два раза, каждый раз вычисляя приближенное значение y, i = 0, 1, …, n. Вычисления прекращаются тогда, когда  будет выполнено условие:

R  » |y- y| < e.                                                                           (6.16)

Приближенным решением будут значения y, i = 0, 1, …, n.

Пример 6.2.

Применим первый  модифицированный метод Эйлера для решения  задачи Коши

y' (t) = y y(0) = 1,

рассмотренной ранее в примере 6.1.

Возьмем шаг h = 0.2. Тогда   n =  = 5.

В соответствии с (6.3) получим расчетную формулу первого модифицированного метода Эйлера:

yi+1 = yi + h f =  yi + 0.2 f, где

f = f(t, y) = y – ,

t = ti +  =  ti + 0.1,

y yi +f(ti, yi) = yi +0.1,

t0  = 0, y0 = 1, i = 0, 1, …, 4.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости