рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

Пусть функция y = f(x) определена в окрестности точки a и имеет в этой окрестности n + 1 производную. Тогда в этой окрестности справедлива формула Тейлора:

f(x) = c0 + c1(x – a) + c2(x – a)2 + … + cn(x – a )n + Rn(x) = Tn(x) + Rn(x),

где

ck =

Tn(x) – многочлен Тейлора:

Tn(x)= c0 + c1(x – a) + c2(x – a)2 + … + cn(x – a )n,                                 (4.1)

Rn(x)остаточный член формулы Тейлора. Его можно записать различными способами, например, в форме Лагранжа:

Rn(x)= , a £ x £ x.

Многочлен Тейлора (4.1) обладает свойством, что в точке x = a все его производные до порядка n включительно совпадают с соответствующими производными функции f, т. е.

T(a)=  f(k)(a),    k =  0, 1, …,  n.

В этом легко убедиться, дифференцируя Tn(x). Благодаря этому свойству многочлен Тейлора хорошо приближает функцию f в окрестности точки a. Погрешность приближения составляет

|f(x) –  Tn(x)| = |Rn(x)|,


т. е. задавая некоторую точность e > 0, можно определить окрестность точки a и значение n из условия:

|Rn(x)| =  < e.                                                                 (4.2)

Пример 4.1.

Найдем приближение функции y = sinx многочленом Тейлора в окрестности точки a = 0. Воспользуемся известным выражением для k-ой производной функции sinx:

(sinx)(k) = sin  x + k                                                                        (4.3)

Применяя последовательно формулу (4.3), получим:

f(0) = sin0 = 0;

f '(0) = cos(0) = 1;

f"(0) = –sin0 = 0;

f(2k-1)(0) =  sin (2k – 1) = (–1)k – 1 ;

f(2k)(0) = 0;

f(2k+1)(x) = (–1)kcosx.

Следовательно, многочлен Тейлора для функции y = sinx для n = 2k имеет вид:

sinx = x – + … + (1)k – 1 + R2k(x),

R2k(x) = (1).

Зададим e = 10 –4 и отрезок [,]. Определим n =2k из неравенства:

|R2k(x)| =  < < < e = 10-4.

Таким образом, на отрезке  ,  функция y = sinx с точностью до e = 10-4 равна многочлену 5-ой степени:

sinx = x – +  = x – 0.1667x3 + 0.0083x5.

Пример 4.2.

Найдем приближение функции y = ex многочленом Тейлора на отрезке [0, 1] с точностью e = 10 –5.

Выберем a = ½, т. е в середине отрезка. При этом величина погрешности в левой части (4.2) принимает минимальное значение. Из математического анализа известно, что для k-ой производной от ex справедливо равенство:

(ex)(k) = ex.

Поэтому

(ea)(k)  = ea = e1/2,

Следовательно, многочлен Тейлора для функции y = ex имеет вид:

ex  = e1/2 + e1/2(x – ½) +  (x – ½)2 + … +  (x – ½)n+ Rn(x),

При этом, учитывая, что xÎ [0, 1], получим оценку погрешности:

|Rn(x)|  < .                                                                     (4.4)

Составим таблицу погрешностей, вычисленных по формуле (4.4):

n

2 3 4 5 6

Rn

0.057 0.0071 0.00071 0.000059 0.0000043

Таким образом, следует взять n = 6.

4.3 Интерполяция  функции многочленами Лагранжа

Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узлов xi Î [a, b], i = 0, 1, … , n. Например, эти значения получены в  эксперименте при наблюдении некоторой величины в определенных точках или в определенные моменты времени x0, x1, … , xn. Обозначим эти значения следующим образом: yi = f(xi), i = 0, 1, … , n. Требуется найти такой многочлен P(x)  степени m,

P(x) =  a0 + a1x + a2x2 + … + amxm,                                                (4.5)

который бы в узлах xi, i = 0, 1, … , n принимал те же значения, что и исходная функция y = f(x), т. е.

P(xi) = yii = 0, 1, … , n.                                                                   (4.6)

Многочлен (4.5), удовлетворяющий условию (4.6), называется интерполяционным многочленом.

Другими словами, ставится задача построения функции y = P(x), график которой проходит через заданные точки (xi, yi), i = 0, 1, … , n (рис. 4.1).

Рис. 4.1

Объединяя (4.5) и (4.6), получим:

a0 + a1xi + a2x + … + amx = yi,      i = 0, 1, … , n.                         (4.7)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости