рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

Оценка погрешности. Для оценки погрешности формулы Симпсона воспользуемся следующей теоремой.

 

Теорема 5.2. Пусть функция f имеет на отрезке [a, b] непрерывную производную четвертого порядка f (4)(x). Тогда для формулы Симпсона (5.9) справедлива следующая оценка погрешности:

| I  –  IС | £ h4,                                                                      (5.12)

где M4 = | f (4)(x)|.

Замечание. Если число элементарных отрезков, на которые делится отрезок  [a, b], четно , т.е. n = 2m, то параболы можно проводить через узлы с целыми индексами, и вместо элементарного отрезка  [xi, xi+1] длины h рассматривать отрезок [x2i, x2i+2] длины 2h. Тогда формула Симпсона примет вид:

I » (f(x0) + f(x2m) + 4 + 2),                                   (5.13)

а вместо оценки (5.10) будет справедлива следующая оценка погрешности:

| I  –  IС | £  h4,                                                                    (5.14)

Пример 5.3.

Вычислим значение интеграла  по формуле Симпсона (5.11) и сравним полученный результат с результатами примеров 5.1 и 5.2.

Используя таблицу значений функции eиз примера 5.1 и производя вычисления по формуле Симпсона (5.11) , получим:

IС = 0.74682418.

Оценим погрешность полученного значения. Вычислим четвертую производную f (4)(x).

f (4)(x) = (16x4 – 48x2 + 12) e, | f (4)(x)| £ 12.


Поэтому

| I  –  IС | £ (0.1)4 » 0.42 × 10-6.

Сравнивая результаты примеров 5.1, 5.2 и 5.3, видим , что метод Симпсона имеет меньшую погрешность, чем метод средних прямоугольников и метод трапеций.

5.5 Правило Рунге практической оценки погрешности

Оценки погрешности по формулам (5.4), (5.8) и (5.12) являются априорными. Они зависят от длины элементарного отрезка h, и при достаточно малом h справедливо приближенное равенство:

 I  –  Ih  » Chk,                                                                                     (5.15)

где Ih приближенное значение интеграла, вычисленное по одной из формул (5.3), (5.5), (5.9), C ¹ 0 и k > 0 – величины, не зависящие от h.

Если уменьшить шаг h в два раза, то, в соответствии с (5.15) получим:

 I  –  Ih/2 » Chk » ( I  –  Ih).                                                              (5.16)

Непосредственное использование оценок  погрешности (5.4), (5.8) и (5.12) неудобно, так как при этом требуется вычисление производных функции f (x). В вычислительной практике используются другие оценки.

Вычтем из равенства (5.15) равенство (5.16):

Ih/2  –  Ih  » Chk(2k – 1).                                                                      (5.17)

Учитывая приближенное равенство (5.16), получим следующее приближенное равенство:

I  –  Ih/2 »  .                                                                                (5.18)

Приближенное равенство (5.18) дает апостериорную оценку погрешности. Вычисление этой оценки называется правилом Рунге. Правило Рунге – это эмпирический способ оценки погрешности, основанный на сравнении результатов вычислений , проводимых с разными шагами h.

Для формул прямоугольников и трапеций k = 2, а для формулы Симпсона k = 4. Поэтому для этих формул приближенное равенство (5.18) принимает вид:

I  –  Iпр  » ,                                                                           (5.19)

I  –  Iтр  » ,                                                                            (5.20)

I  –  IС  » .                                                                             (5.21)

Используя правило Рунге, можно построить процедуру приближенного вычисления интеграла с заданной точностью e. Нужно, начав вычисления с некоторого значения шага h, последовательно уменьшать это значения в два раза, каждый раз вычисляя приближенное значение I . Вычисления прекращаются тогда, когда  результаты двух последующих вычислений будут различаться меньше, чем на  e.


Пример 5.4.

Найдем значение интеграла   с точностью e = 10-4, используя формулу трапеций и применяя вышеизложенную процедуру дробления шага. В примере 5.2 было получено значение I при h1 = 0.1, Ih =0.74621079. Уменьшим шаг вдвое: h2 = 0.05 и вычислим I= 0.74667084, e2  = ( I- I) = (0.74667084 – 0.74621079) » 1.5×10-4. Так как |e2| > e, то снова дробим шаг: h3 = 0.025, вычисляем I= 0.74678581, e2  = ( I- I) = (0.74678581 – 0.74667084) » 4×10-5. Поскольку  |e3| < eтребуемая точность достигнута и I » 0.7468 ± 0.0001.


Тема 6. Численное решение дифференциальных уравнений

6.1 Постановка задачи Коши

Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид:

y' (t) = f(t, y(t)).                                                                                      (6.1)

Решением уравнения (6.1) является дифференцируемая функция y(t), которая при подстановке в уравнение (6.1) обращает его в тождество. На рис. 6.1 приведен график решения дифференциального уравнения (6.1). График решения дифференциального уравнения называется интегральной кривой.

Рис. 6.1

Производную y'(t) в каждой точке (t, y) можно геометрически интерпретировать как тангенс угла a наклона касательной к графику решения, проходящего через эту точку, т е.: k = tga = f(t, y).

Уравнение (6.1) определяет целое семейство решений. Чтобы выделить одно решение, задают начальное условие:

y(t0 ) = y0,                                                                                                  (6.2)

где t0 – некоторое заданное значение аргумента t, а y0 – начальное значение функции.

Задача Коши заключается в отыскании функции y = y(t), удовлетворяющей уравнению (6.1) и начальному условию (6.2). Обычно определяют решение задачи Коши на отрезке, расположенном справа от начального значения t0, т. е.  для t Î [t0, T].

Разрешимость задачи Коши определяет следующая теорема.

 

Теорема 6.1.  Пусть функция f(t, y) определена и непрерывна при t0 £  t £  T, -¥ < y < ¥  и удовлетворяет условию Липшица:

| f(t, y1) – f(t, y2)| £ L| y1 – y2|,

где L некоторая постоянная, а  y1 , y2  –  произвольные значения.

Тогда для каждого начального значения y0 существует единственное решение y(t) задачи Коши для t Î [t0, T].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости