рефераты рефераты
Главная страница > Учебное пособие: Вычислительная математика  
Учебное пособие: Вычислительная математика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Вычислительная математика

где

a11 a12 a13 …                    a1n                         x1                b1

a21 a22 a23 …                    a2n                          x2                          b2

A = a31 a32  a33 …           a3n               x =x3  ,   b =b3

an1         an2         an3                         ann                         xn                           bn

По правилу Крамера система n линейных уравнений имеет единственное решение, если определитель системы отличен от нуля (det A 0) и значение каждого из неизвестных определяется следующим образом:

xj = ,   j = 1, …, n,                                                                           (3.3)


где det Aj – определитель матрицы, получаемой заменой j-го столбца матрицы A столбцом правых частей   b.

Непосредственный расчет определителей для больших n является очень трудоемким по сравнению с вычислительными методами.

Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций.

Прямые методы всегда гарантируют получение решения, если оно существуют, однако, для больших n требуется большое количество операций, и возникает опасность накопления погрешностей.

Этого недостатка лишены итерационные методы, но зато они не всегда сходятся и могут применяться лишь для систем определенных классов.

Среди прямых методов наиболее распространенным является метод исключения Гаусса и его модификации, Наиболее распространенными итерационными методами является метод простых итераций Якоби и метод Зейделя.

Эти методы будут рассмотрены в следующих разделах.

3.2 Метод исключения Гаусса. Схема единственного деления

Основная идея метода исключений Гаусса состоит в том, что система уравнений (3.1) приводится к эквивалентной ей системе с верхней треугольной матрицей (прямой ход исключений), а затем неизвестные вычисляются последовательной подстановкой (обратный ход исключений).

Рассмотрим сначала простейший метод исключения Гаусса, называемый схемой единственного деления.

Прямой ход состоит из n – 1 шагов. На первом шаге исключается переменная x1 из всех уравнений, кроме первого. Для этого нужно из второго, третьего, …, n-го уравнений вычесть первое, умноженное на величину


m = , i = 2, 3, …, n.                                                                         (3.4)

При этом коэффициенты при x1 обратятся в нуль во всех уравнениях, кроме первого.

Введем обозначения:

a = aij – ma1j ,  b= bi – mb1.                                                          (3.5)

Легко убедиться, что для всех уравнений, начиная со второго, a= 0, i = 2, 3, …, n. Преобразованная система запишется в виде:

 a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

ax2 + ax3 + … + axn = b

a x2 + ax3 + … + axn = b                                                      (3.6)

ax2 + ax3 + … + axn = b

Все уравнения (3.6), кроме первого, образуют систему (n – 1)-го порядка. Применяя к ней ту же процедуру, мы можем исключить из третьего, четвертого, …, n-го уравнений переменную x2. Точно так же исключаем переменную x3 из последних n – 3 уравнений.

На некотором k-ом шаге в предположении, что главный элемент k-ого шага a0, переменная xk исключается с помощью формул:

m = ,

a = a – ma ,


b= b – mb, i, j = k + 1, k + 2, …, n.                                      (3.7)

Индекс k принимает значения 1, 2, …, n – 1.

При k = n – 1 получим треугольную систему:

a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

ax2 + ax3 + …+ axn = b

ax3 + …+ axn = b                                                      (3.8)

axn = b

с треугольной матрицей An.

Приведение системы (3.1) к треугольному виду (3.8) составляет прямой ход метода Гаусса.

При использовании метода Гаусса нет необходимости в предварительном обосновании существования и единственности решения (т. е. доказательства, что det A ¹ 0). Если на  k-ом шаге все элементы a (i = k, k + 1, …, n) окажутся равными нулю, то система (3.1) не имеет единственного решения.

Обратный ход состоит в вычислении переменных. Из последнего уравнения (3.8) определяем xn... Подставляя его в предпоследнее уравнение, находим xn-1, и т. д. Общие формулы имеют вид:

xn  = ,

xk  = (b- a xk+1 - a xk+2 - … - a xn),  k = n – 1, n – 2, …, 1 (3.9)


Трудоемкость метода. Для реализации метода исключения Гаусса требуется примерно 2/3n3 операций для прямого хода и n2 операций для обратного хода. Таким образом, общее количество операций составляет примерно 2/3n3 + n2.

Пример 3.1.

Применим метод исключения Гаусса по схеме единственного деления для решения системы уравнений:

2.0x1 + 1.0x2   0.1x31.0x4  2.7

0.4x1 + 0.5x24.0x3   8.5x4 21.9

0.3x1  1.0x2 + 1.0x35.2x4  3.9                                            (3.10)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости