рефераты рефераты
Главная страница > Учебное пособие: Теоретичні основи теплотехніки  
Учебное пособие: Теоретичні основи теплотехніки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретичні основи теплотехніки

Отже,

∆u=cvm(t2-t1) (8.2)

або

du=cvdt (8.3)

З виразу першого закону термодинаміки для ізобарного процесу (4.5) випливає, що

dqp=dh (8.4)

або

qp=h2-h1 (8.5)

Одначе

qp= cpm(t2-t1) (8.6)

Тоді

∆h= cpm(t2-t1) (8.7)

Або

dh=cpdt (8.8)


Таким чином, вирази (8.2) та (8.7) придатні для обчислення зміни внутрішньої енергії та штальпії в будь-якому процесі ідеального газу.

Можна також отримати загальні вирази для обчислення зміни ентропії в процесах змі ни стану ідеальних газів.

Враховуючи, що

підставимо значення dq з (4.3) та (4.5), отримаємо:

Замінившив цих виразах du з (8.3) та dh з (8.8) та враховуючи, що

 

Отримаємо:

 (8.9)

 (8.10)

Інтегруючи ці диференціалші рівняння, отримаємо :


 (8.11)

 (8.12)

8.1 Ізохорний процес(v =const)

В р - v -координатах графік процесу являє собою пряму лінію

Рис. 8.1.1. Зоораженняізохорногопроцесу

В РV і ТS-координатах. паралельну осі р (рнс.8.1.1 а), причому процес може протікати з підвищенням (процес 1-2) тапониженнямтиску (процес 1-2').

Виписавши для крайніх точок 1 та 2 рівняння стану та поділивши їх почленно, отримаємо залежність між параметрами газу в ізохорному процесі:

p1v=RT1 p2v=RT2

або

 (8.13)


В ізохорному процесі dv=0 і робота не виконується (lv=0). Томувся теплота витрачається тільки на зміну внутрішньої енергії:

qv=∆u=cvm(t2-t1)

Зміна ентальпії може бути знайдена із загального виразу для всіх процесів (8.7).

Вираз для зміни ентропії в ізохорному процесі можна отримати із загального співвідношення (8.11), прийнявши v1=v2

 (8.14)

чи з врахуванням (8.12)

 (8.15)

Із (8.14) випливає, що між ентропією та температурою існує логарифмічна залежність . На Т- s - діаграмі ця залежність зображується кривою 1-2 ( рис. 8.1.1,6).

8.2 Ізобарний процес (р=сопst)

В р-v -координатах процес позначається прямою 1-2 ( рис. 8.2.1, а). Записавши рівняння стану для двох точок процесу.

pv1=RT1 pv2=RT2

та розділивши почленно друге на перше, отримаємо залежність між параметрами.

 (8.16)

Зміна внутрішньої енергії визначається за загальним виразом (8.1). Робота процесу, віднесена до 1 кг газу:

 (8.17)

Так як для ідеального газу

pv2=RT2 pv1=RT1

то

lp=R(T2-T1) (8.18)

Кількістьтегтотнв ізобащомупроцесі може бути обчислена за(8.5)

Рис 8.2.1. Зображення ізобарного процесу в РV і ТS-діаграмах.

qp=∆h=(h2-h1) (8.19)

тобто кількість теплоти в ізобарному процесі рівна зміні ентальпії.

Однач є, згідно (8.6):

qp=cpm(t2-t1)

тобто

∆h=cpm(t2-t1) (8.20)

А оскільки ентальпія є параметром стану, то в любому термодинамічному процесі ∆h можна визначитиза формулою (8.20).

Зміну ентропії в ізобарному процесі можна визначити із загального виразу (8.12),прийнявши р1 = р2,

 (8.21)

чи, враховуючи (8.16):

 (8.22)

Отже, в Т-s -координатах ізобара - логарифмічна крива (рис.8.2.1, б. пунктиром нанесена ізохора). Оскільки ср >сv, то з порівняння (8.14) та (82.1)

видно, що ізобара розташована більш полого, ніжізохора.


8.3 Ізотермічний проце с (Т = сопst)

Рівняння процесу отримаємо із рівняння стану рv = RT

рv = сопst (8.23)

В р-v - координатах ізотерма зобразиться рівнобокою гіперболою (рис. 8.3.1,а). Зв'язок мі ж параметрами встановлюється з рівняння процесу(8.23).

p1v1= p2v2

Зміна внутрішньої енергії та ентальпії для ідеального газу в ізотермічному процесі рівна нулю (du = 0 та dh = 0)9 оскільки dТ = 0. Отже, вся підведена в процесі теплота витрачається тільки на роботу. Робота в процесі визначається за (4.4) шляхом заміни

з рівняння стану.

Рис 8.3.1. Зображення ізотермічного процесу в РV і ТS-діаграмах

Після інтегрування

dlT=pdv

одержимо:

 (8.23)

Теплота, необхідна для здійснення процесу, згідно (4 3)

 (8.24)

чи на основі (6.1)

δq=Tds

qT=T(s2-s1) (8.25)

Вираз для зміни ентропії в ізотермічно му процесі може бути отриманий із (8.24) та (825)

 (8.26)

Графік ізотермічного процесу в Т-s-координатах приведений на рис. 8.3.1,6.

8.4 Адіабатний процес

Адіабатним називається такий процес, при якому робоче тіло не обмінюється теплотою з навколишнім середовищем (q = 0; dq = 0).

Рівняння адіабатного процесу в р-v- координатах може бути отримано, якщо використовувати вирази першого закону термодинаміки (4.3) і (4.5) та врахувати особливості ідеального газу:

dU=cvdT dh=cpdT

Тоді:

dq=cvdT+pdv=0 або cvdT=-pdv

dq=cpdT+vdp=0 або cpdT=vdp

Звідки

або

Проінтегрувавши останній вираз, отримаємо рівняння процесу k∙lnv+lnp=0:

рvk =сопst,(8.27)

де к - показник адіабати.

В р-v- координатах адіабата зображується нерівнобокою гіперболою (рис.8.4.1,а ), що проходить трохи крутіше ізотерми. Зв'язок між параметрами р і v виходить з рівняння процесу (8.27):

 (8.28)

Для двох точок процесу напишемо рівняння стану:

p1v1=RT1 p2v2 =RT2

звідки

 (8.29)

Підставивши відношення тисків з (8.28), отримаємо залежність між Т і v

 (8.30)

Розв'язавши спільно рівняння (8.30) і (8.29) отримаємозапежність між р і Т

 (8.31)

Зміна внутрішньої енергії визначається за загальним виразом (8.2); формула для роботи в процесі може бути отримана з (43):

δlq=-du або lq=-(u2-u1) (8.32)

тобто в адіабатному процесі робота здійснюється за рахунок зміни внутрішньої енергії.

З врахуванням (8.2) вираз (8.32) прийме вигляд

lq=-cvm(T2-T1)= cvm(T1-T2) (8.33)

чи з врахуванням (5.4) і

 (8.34)

За мінивши з рівнянь стану Т1 і Т2 отримаємо

 (8.35)

Рис. 8.4.1. Зображення адіабатного гроцесу в РV і ТS-координатах.

Перетворимо рівняння (8.34)з врахуванням (8.31)

 (8.36)

Зміна ентаттьпії в адіабатному процесі підраховується по (8.7). Зміна ентропії рівна нулю, такяк за визначенням процесу q = 0 і

ds== 0.

Відповідно, s = сопst. Тому адіабатний процес називають ізоентропійним процесом.

В Т-s-координатах адіабата зображується вертикальною прямою (рис.8.4.1,б).

8.5 Політропнийі процесс

Любий самовільний процес зміни стану робочого тіла, що проходить при постійнійтеплоємності, називається політропним.

Рівняння політропното процесу може бути одержано з рівняння першого закону термодинаміки для ідеального газу:

dq=cvdT+pdv

dq=cрdT-vdp

Кількість підведоіої теплоти для політропного процесу

dq=cпdT (8.37)


де сп- теплоємністьполітропногопроцесу. Тоді рівняння першого закону термодинаміки для політропного процесу:

cпdT=cvdT+pdv

cпdT=cрdT-vdp

або

(cп-cv)dT=pdv

(cп-cp)dT=-vdp

Розділивши другерівняння на перше, одержимо:

Позначимо величину - постійну для даного процесу, через n

Тобто = п. (8.38)

Одержима

 (8.39)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

рефераты
Новости