рефераты рефераты
Главная страница > Учебное пособие: Теоретичні основи теплотехніки  
Учебное пособие: Теоретичні основи теплотехніки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретичні основи теплотехніки

Згідно закону Кірхгофа відношення густини потоку випромінювання сірого тіла до його поглинальної властивості не залежить від природи тіла і рівне густині потоку випромінювання абсолютно чорного тіла при цій же темпер атурі.

Розглянемо систему двох тіл, які мають необмежені плоскі поверхні, повернуті одна до іншої (рис. 23.1.2). Поверхня 1 належить сірому тілу, а поверхня 2 - абсолютно чорному.

Де Eφ0 - густина потоку випромінювання, яка відповідає куту φ

dΩ - елементарний тілесннйкуг.

23.2 Теплообмін між дбома тілами

Як правило, тілов процесі променистого теплообміну взаємодіє з іншими тілами Розглянемо процес теплообміну між двома плоско паралельними поверхнями, (рис 232.1). Дія кожної повфхні задані постійні в часі температури Т1 і Т2 (Т1>Т2), поглинальні властивості тіл А1 і А2.

Падаючий на пластину променистий потік рівний ефекгивн ому випромінюванню першої пластини і навпаки.

Тоді результуючий тепловий потік:

Q1-2=Eеф1- Eеф2 (23.14)

В свою чергу за формулою (23.7):

Враховуючи що Q12=-Q21 і підставляючи в значення q12 одержим:


Звідси:

Згідно закону Кірхгофаі Стефана-Больцмана:

звідси

 (23.15)

 (23.16)

Розглянемо променистий теплообмін між двома тілами, одне з яких знаходиться є порожнині іншого (рис 23.2.2). Поверхня внутрішнього тіла F1 випукла, зовнішнього F2 - ввігнута - відповідне значення температур поверхонь Т1 і Т2 (Т1>Т2) пошинальні властивості тіл А1 і А2. Резупьтуючий тепловий потік, який передається від першого тіла до другого, визначається рівнянням:

 (23.17)

де φ21- середній кутовий коефіцієнт випромінювання, який характеризує частину випромінювання зовнішньої поверхні, яка по падає на внутрішню.

Частина енергії, яка залишилася, проходить повз внутрішнє тіло і знову попадає на зовнішню поверхню.

Рис 23.2.2. Схема променистого теплообміну між тілами в замкнутому просторі

Повні потоки ефективного випромінювання визначається співвідношенням:

 (23.18)

Враховуючи, що Q12 = -Q21 також співвідношення (23.17) і (23.18) одержима

Замінити співвідношення  виразом

одержимо:

Дня визначення величини φ21 приймаємо Т1= Т2 і отже Q12 = 0.

В цьому випадку F1- φ21F2=0 , звідси

Кінцевий вираз для результуючого потоку:

 (23.19)

де:

приведена поглинальна здатність системи

При випромінюванні тіла в необмежений простір з температурою Т2 приймемо F1<<F2. Тоді:

 (23.20)

При наявності екранів поглинапьна здатність:

Де А1, А2 -тюглинапьна здатність тіл;

Аеі – поглинальна здатність і-го екрану;

п-кількість екранів.


24. Теплопередача

Теплопередачу можна розглядати як теплопровідність при граничних умовах треть ого роду. Теплопередача включає в себе: тепловіддачу від більш гарячої рідини до стінки, теплоповідність в стінці, тепловіддачу від стінки до більш холодного середовища.

Теплопередача - це передача тепла від одного рухомого середовища до іншого через розділюючу стінку до іншого.

24.1 Тепюпередача через плоску спинку

При стаціонарному тепловому режимі тепловий потік через стінк

(24.2)

Той же тепловий потік передається від стінки до холодного середовища

Рівняння можна зали сатиувнгляді:


 (24.3)

Якщо просумувати всі рівняння отримаємо:

Тепловий потік становить:

 (24.4)

Величину

називають коефіцєнтом теплопередачі,

Рівняння можна загасати у вигляді:

q=k(tp1-tp2),  (24.5)

Величина, обернена до коефіцієнта теплопередачі, називається повним термчнимопоромтеплопередачі:


Оскільки загальний термічний опір складається з часткових термічних опорів, то у випадку багатошарової стінки необхідно враховувати опір всіх складових:

 (24.6)

Густина теплового потоку через багатош рову стінку:

 (24.7)

Температури поверхонь:

;

На межі двох шарів температуру можна визначити за формулою:

 (24.8)

24.2 Теплопередта через циліндричну стішу

Розглянемо однорідну циліндричну стінку довжиною l зі сталим коефіцієнтом теплопровідності λ (рис. 24.2.1). Температури рухомих середовищ відповідно tр1 і tр2 постійні коефіцієнти тепло віддачі на внутрішній і зовнішній поверхнях труби а1, і а2.

Рис. 24.2.1. До визначення теплового потоку через циліндричну стінку.

Допустимо, що довжина труби велика порівняно з товщиною стінки. То му в трата ми з тор ця тру ои можна знехтувати.

Кількість тепла, яке поступає від рухомого середовища до стінки і від стінки до другого середовища буде одна і таж

Від середовищадостінки:

q1=a1πd1(tр1- tc2)

Тепловийпотік через стінку:

Від стінки до другого серед овища:

q2=a2πd2(tр1- tc2)

Запишемо рівняння наступним чином:


Просумуємо рівняння і одержимо:

Звідси:

Позначимо:

 (24.9)

Рівняння запишеться:

q1=k1pπ(t1-t2), Вт/мК

Значення k1 чисельно рівне кількості теплоти, яка проходить через стінку довжиною 1м за одиницю часу від одного середовища до іншого при різниці температур між ними в один градус.

Величина

обернена до лінійного коефіцієнта теплопередачі називається лінійним термічним опором теплопередачі.

Окремі доданки повного термічного опору представляють собою:

, - термічні опори тепловіддачі на відповідних поверхнях;

 - термічний опір теплопровідності стінки.

Якщо тепловий потік через циліндричну стінку віднести до внутрішньої або зовнішньої гюверхні стінки, то отримаємо густину теплового потоку Вт/м , віднесену до одиниці відповідної поверхні труби:

Тобто:

kl=d1.k1= d2.k2

Формули для k1і k2 мають вигляд:


У випадку теплопередачі через багатошарову стінку система рівнянь (24.9) повинна бути замінена системою, яса враховує опір теплопровідності всіх шарів:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

рефераты
Новости