рефераты рефераты
Главная страница > Учебное пособие: Теоретичні основи теплотехніки  
Учебное пособие: Теоретичні основи теплотехніки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретичні основи теплотехніки

Отже розподілення температури в стінці

буде мати лінійний характер.

Визначити тепловий потік через плоску одношарову стінку можна, використовуючи закон Фур'є (21.4).

Проінтегрувавширівняння від t1 до t2, одержимо:

- називають теплопровідністю плоскої стінки.

- термічний опіртеплопровідносп одношарової стіки.

21.4 Теплопровідність багатошарової стінки

Розшянемо теплопровідність багатошарової плоскої стінки з товщиною шарів δ1, δ2, δ3 і коефіцієнтами теплопровідності λ1, λ2, λ3, (рис 21.4.1).

Після додавання лівих і правих частн рівнянь, одержима

 (21.17)

для п шарів

 (21.18)

21.5 Теплопровідність через циліндричну стінку

Розглянемо стаціонарний процес теплопровідності (рнс 21.5.1).

Проінтегру єм о рівняння:

 (21.21)


Підставимо граничні умови (21.20) в рівняння (21.21).

 (21.22)

 (21.23)

віднімемо від (21.22) рівняння (21.23):

 (21.24)

Теплопровідність через цилівдрнчну стінку

 (21.25)

- термічний опір теплопровідності через циліндричну стінку.

Дня багатошарової циліндричної стінки тепловий потік рівний :


 (21.26)

21.6 Теплопровідність тіл з внутрішнім джерелом теплоти

Розглянемо стінку товщиною - 2δі коефіцієнтом теплопровідності – λ (рис 21.6.1). В стінці діє внутрішнє джерело з об'ємною густиною теплового qv

 (21.27)

Інтегруємо рівняння (21.27):

Підставимо граничні умови: х = 0 , t0 = С.

Одержимо:


-рівняння зміни температури в плоскій стінці з внутрішнім джерелом теплоти.


22. Конвективний теплообмін

Конвекцією називається процес поширення теплоти за допомогою руху макроч астин ок рі ди нн.

В інженерній практиці найчастіше розглядають теплообмін між рухомою рідиною і твердою поверхнею, який називається конвективнич теплообміном, або тепловідд ачею

Згідно закону Ньютона-Ріхмана тепловий потік Q від рідини до стінки пропорційний площі поверхні теплообміну і різниці температур між твердою етикою tc і рідиною tp.

 (22.1)

Де а-коефіцієнттепловіддачі Вт/м2К

Фізичний зміст коефіцієнта тепловіддачі можна визначити як кількість теплоти, яка проходить через одиницю площі ізотермічної поверхні за одиницю часу при різниці температур між стінкою і поверхнею рівною 1 С.

Процес конвективного теплообміну нерозривно зв'язаний з руком рідини Розрізняють два видируху-вимушений і вільний.

Вільний рух рідини виникає в результаті дії масових сил; вимушенім -

при дії стороннх збудників (насоси, вентилятори). На процес конвективного теплообміну впливає і режим руху - ламінарний чи турбулентний При ламінарному русі течія має спокійний характер, при турбулентному -утворюються завихрення Але при люб ому режимі руху рідини в тонкому шарі біля поверхні стінки рух рідини в результаті дії сил тертя сповільнюється і швидкість падає до нуля. Тонкий шар рідини біля поверхні тіла, в якому відбувається зміна швидкості рідини від значення швидкості не збудженого потоку подалі від стінки до нуля безпосередньо на стінці називається динамічнимпограничним шаром.

Тонкий шар рідини, безпосередньо біля стінки, рух в якому має ламінарний характер,називають в'язкимпідшаром .Якщо температури стінкиі рідини неодинакові, то біля стінки утворюється тепловий пограничний шар, в якому відбувається вся зміна температури рідини. За пограничним шаром температура рідини постійна і рівна й. В загальному випадку товщини теплового і динамічного шару можуть не співпадати. Співвідношення товщини динамічного і теплового пограничних шарів визначається безрозмірним числом Прандля:

(22.2)

Де v-кінематичнав'язкість рідини;

а-коефіцієнт температуропровідності.

Безпосередньо біля стінки в ламінарному підшарі перенесення теплоти до стіїки здійснюється теплопровід ні стю і може бутивиражене законом Фур'є:

Де п – нормаль до поверхні тіла

Цю ж кількість теплоти можна визначити законом Ньютона-Ріхмана

Прирівнюючи ці рівняння одержимо:

 ;  (22.3)

Диференціальне рівняння, що описуєумови теплообміну на поверхні каналу (п = 0) називається рівнянням тепгтопер едачі.

По своїй фізичній суті конвективний теплообмін є дуже складним процесом і залежить від великого числа факторів, які визначають процес тепловіддачі. В загальному випадку коефіцієнт тепловіддачі є функцією фізичних параметрів рідини, характеру руху, форми і розмірів тіла.

Звідси коефіцієнт тепловіддачі:

а =f(λ,l,ρ,v,υ,β,Ф,a). (22.4)

Рівняння (22.4) (показує, що коефіцієнт тепловіддачі -складна величина і для її визнач еннянеможливодатизагальну формулу. Як правило для визначення а необхідно використовувати експериментальні дослідження.

22.1 Основні поняття теорії подібності

При вивченні різних фізичних явищ використовують два методи досліджень, які дозволяють одержати кількісні закономірності. В першому методі використовується експериментальне дослідження конкретних властивостей одиничного явищ а, в друго му - виходять з теоретичного дослідження даної проблеми. Перевагою експериментального методу дослідження є достовірність одержаних результатів. Але результати даного експерименту не можуть бути використані стосовно другого явица, яке в деталях відрі зняєть ся від вивчено го.

Другий метод досліджень для знаходження кількісних характеристик використовує найбільш загальні закони природи, які в свою чергу є результатом надзвичайно широкого уза гальнення дослідних даних.

Будь-яке диференціальне рівняння є математичною моделлю цілого класу явищ.

Таким чином, гід класом розуміють таку сукупність явищ, які характеризуються основним механізмом процесіє і однаковою фізичною природою

Явища, які входять в клас, підпорядковуються однаковим рівнянням як по формі, так і по фізичному змісту величин, які в нього входять Наприклад, диференціальне рівняння теплопровідності.

До кожного диференціального рівняння необхідно поставити умови однозначності.

В багатьох випадках знайти рішення диференціального рівняння, яке б відповідало конкретним умовам однозначності неможливо.

Об'єднання двох методівздійснюється теорією подібності.

Крім класу явищ і одиничного явища теорія подібності вводить поняття групи явищ

Групою явищ називають сукупність фізичних процесів, які описуються однаковими по формі і змісту диференціальними рівняннями і однаковими по формі і змісту розмірними умовами однозначності.

Поняття про подібні сть явищ зустрічається ще в шкільному курсі, коли ми говоримо про подібність трикутників. В даному випадку мова йде про геометричну подібність. Можна також говорити про подібні сть картини руху двох потоків рідини - кінематичну подібність, подібність поля розподілу сил -динамічну подібні сть, подібність розподілу температур-теплову подібність.

В загальному вигляді поняття подібності явищ зводиться до наступних положень:

Понягтяпро подібність у відношенні до фізичних явищ можна тільки застосовувати до явищ фізично однорідних, які описуються однаковими по формі і по змісту аналітичними рівняїнями.

Обов'язковою умовою подібності явищ є геометрична подібність.

При аналізі подібних явищ сггівставляги між собою можна тільки однорідні величини у відповідних точках простору і у відповідний момент часу.

Однорідними називаються величини, які мають однаковий фізичний зміст і однакову розмірність.

Відповідними точками геометрично подібних систем називаються такі точки, координати яких задовольняють умові:

 ; ;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

рефераты
Новости