рефераты рефераты
Главная страница > Учебное пособие: Теоретичні основи теплотехніки  
Учебное пособие: Теоретичні основи теплотехніки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретичні основи теплотехніки

В термодинамічній системі, яка складається з багатьох елементів необхідно враховувати ККД кожного елементу ηв,j

Перемноживши між собою всі ефективні ККД елементів системи на абсолютній внутрішній ККД циклу, одержимо ефективний абсолютний ККД для всієї системи.

де  - добуток величин ефективних ККД які характеризують необоротні втрати в всіхп елементах системи.

ККД показує, яка доля виділеної в системі теплоти перетворюється в корисну роботу, віддану зовнішньому споживачу.

lпов=ηвq1

Очевидно, що втрати теплоти ∆q = (1-ηс) q1 представляють собою долю теплоти q1, яка не перетворилася в роботу і включає теплоту q2 передану холодному джерелу і втрати теплоти ∆qвт , обумовлені необоротністю процесів в окремих елементах установки в результаті тертя і кінцевої різниці температур, втратами в навколишнє середовище.

Очевидно:

∆qвт=lц-lпов

де lц - робота, яка виконується в оборотньому циклі.

Рис 25.2 Діаграма Грасмана- Шагурта компресійної теплонасосної установки.

В відкритих системах ексергія речовини рівна нулю, в закритих системах, коли відсутній обмінречовиничерез межі системи, рівні нулю ексергії потоку речовини і нульова ексергія.

В хімічних реакторах періодичної дії нугтьова ексергія при хімічних перетвореннях є основною.

Ексергетичний коефіцієнт корисної дії для малих машині апаратів:

Діаграма Грассмана - Шаргута. Для аналізу термодинамічних циклів, роботи машин і апаратів використовується діаграма Гзассмана-Шаргута.

Націй діаграмі кожний потік ексергії позичається полосою, ширина якої пропорційна значенню ексергії.

На рис 25.1 і 25.2 представлена схема і відповідно діаграма Цїассмана-Шаргута компресорної теппонасосної установки

В компресорі П проходить стиснення парів низькокиплячого теплоносія, телячого він поступає в конденсаторІІІ. Тут пари теплоносія охолоджуються і конденсуються при високому тиску, при цьому виділяється кількість теплоти Q", яка далі використовується для нагріву. Із апарату Ш конденсат поступає в дросель IV, де в результаті дроселювання його температурапоннжується Ддлі охолоджений конденсат поступає в випарник V, де з а рахунок теплоти Q’< Q" яка підводиться з навколишнього середовища він повністю випарюється Утворєні в випарнику пари теплоносія поступають в компресор II

На діаграмі величина втрати ексергії в кожному елементі установки відповідає зменшенню полоси ексергії і умовно позначається заштрихованим трикутником. На вході ексергія рівна ексергії електродвигуна. В елементі І проходять втрати ексергії, пов'язані з втратами в приводі. Дані по ходу відмічені втрати ексергії в окремих елементах. Втрати ексергії мають різну природу і можуть бути пов"язані із кінцевою різницею температур, із теплообміном з навколишнім середовищем, теплопровідністю, тертям в деталях і вузлах машин і тд. Діаграма дозволяє встановити де спостерігаються максимальні втрати ексергії і розробити заходило їх зниженню.


26. Шляхи економії енергоресурiв

26.1 Вторинні енергоресурси і відновлювальні джерела теплоти

Одним із важливих шляхів економії енергоресурсів є використання вторинних енергоресурсів (ВЕР) і в т.ч. і відновлювальних джерел теплоти (ВД).

Під ВЕР розуміють хімічно зв'язану теплоту, фізичну теплоту і потенціальну енергію надлишкового тиску продукції, відходів, побічних і проміжних продуктів, які утворюються в технологічних агрегатах (установках, процесах), не використовуються в самому агрегаті, але можуть бути частково або повністю використані для енергопостачання інших агрегатів. ВЕР можуть використовуватись безпосередньо без зміни ввду енергоносія або зі змною енергоносія шляхом одержання теплоти, енергії, холоду абот ехнічної роботи в утилізаційній установці.

В залежності від виду і параметрів робочих тіл відрізняють чотири основних напрямки використання ВЕР:

- паливне - безпосереднє використ ання горючих компонентів в якості палива;

- теплове-використання теплоти, яку одержуємо зарахунокВЕР;

- ситове ( використання механічної та електричної енергії, яка виробляється за рахунок ВЕР;

- комбіноване;

Найбльші джерела ВЕР мають підприємства чорної і кольорової металургії, хімічної і нафтопереробної промисловості.

В даний час тегпота високого потенціалу в загальній витраті корисної енергії складає 26% Із загальної виграти теплоти високого потенціалу 33% йде на плавку, 40% на нагрів і 20% на випалювання руд.

Приблизно 52% всієї корисної енергії в народному господарстві витрачається в виді теплоти середнього (373-623 К) потенціалу і на її одержання витрачається 38% всіх паливно-енергетичних ресурсів. Ця теплота використовується для задоволення технологічних потреб. Основними енергоносіями,які забезпечують середнії низькотемпературні процеси є пара і гаряча вода.

Для утилізації ВЕР найбільш поширеними в різних галузях народного господарства установками є котли-угилізатори, які використовують високо потенціальні димові гази промислових печей і технологічні гази хімічного виробництва, а такожводяні економайзери для нагріву живильної води котлів і повітрепідігрівачів для нагріву дуттєвого повітря.

Котли-утилізатори забезпечують велику економію палива шляхом генерування енергетичної і технологічної пари, а також нагріву води.

Можлива виробітка тегпоти в виді пари або гарячої води в утилізаційній установці за рахунок теплових ВЕР в загальному вигляді визначається за формулою

QT=(h1G1- h2G2)β(1-ζ)

а можлива виробітка холоду

Qx= QTε

де G1 і G2 -кількість енергоносія на вході і на виході.

h1, h2- ентальпія

β - враховує невідповідність годин роботи і режиму утипізаційної установки і джерела ВЕР.

ζ - коефіцієнт, який враховує втрати;

ε - холодильний коефіцієнт.

Можлива виробітка електроенергії в утипізаційній турбіні за рахунок ВЕР.

W=mВЕР∙τ∙l∙ηoi∙ηM∙ηI∙

де mВЕР∙-часова кількість енергоносія,яка має надлишковий тиск.

τ -число годинроботн;

l -робота ізоентропного розширення;

ηoi∙ - внутрішній відносний ККД турбіни;

ηM - механічний ККД;

ηI∙ -ККД генератора.

26.2 Відновлювані джерела теплоти

Відновлювальними джерелами теппоти є енергія сонця, енергія вітру, припливів і відпливів і т.д.

Таблиця 26.1. Природні ресурси енергії і їх величина.

Назва Величина (кВт∙г)
Невідновлювальні джерела теплоти
Термоядерна енергія 100000000∙1012
Ядерна енергія ділення 547000 012
Хі мічна енергія корисних копалин органічного походження 55000 1012
Внутрішнє тепло земні 134 1012
Щорічно поповнювальні ресурси
Еіергія морських приплив в 70000 1012
Енергія падаючого на землю сонячного проміння 58000∙1012
Енергія сонячного проміння, яке акумулюється в верхніх шарах атмосфери (150-200 км) в вигляді атмосферних кисню і азоту. 0,012∙1012
Енергія вітру 1700∙1012
Енергія рік 18∙1012

Всі види енергії, які виробляються на землі складають 5% від поступаючої на землю сонячної радіації. Температура в центрі сонця досягає 10 °С. Температура на поверхні сонця 5500°С.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

рефераты
Новости