рефераты рефераты
Главная страница > Учебное пособие: Теоретичні основи теплотехніки  
Учебное пособие: Теоретичні основи теплотехніки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретичні основи теплотехніки

 (24.10)

З рівняння отримаємо, що:

Критичиеий діаметр теплопередачі через циліндричну стінку. Розглянемо вплив зміни зовнішнього діаметра на термічний опір однорідної циліндричної стінки:

При постійних значеннях а, d, λ та a2 - повний термічний опір циліндричної стінки буде залежати від зовнішнього діаметра.

При збільшенні d2 вираз - буде зростати, а  - зменшуватись.

Дослідимо Rl як функцію d2 на екстремум:

При  - термічний опір теплопередачі буде мінімальним.

Значення зовнішнього діаметра труби, яке відповідає мінімальному критичному опорові теплопередачі називається критичним діаметром і позначається dкр:

 (24.11)

Якщо труба має ізоляцію зовнішнім діаметром й-^ то термічний опір для такої труби буде:


24.3 Шляхи інтенсифікації теплопередачі

Розшянемо шляхи інтенсифікації теплопередачі:

а) інтенсифікація теплопередачі шляхом збільшення коефіцієнтів тепловіддачі.

З рівняння теплопередачі Q=kF∆t слідує, що при заданих розмірах стінки і температурах рідини величиною, яка визначає тепловий потік, є коефіцієнт теплопередачі k. Але оскільки при теплопередачі k є характеристикою складною,тонеобхіднопроаналізувативсіскладові:

При =0 (длятонких стінок):

Із рівнянь видно, що коефіцієнт теплопередачі не може бути більшим найменшого а.

При а2 →∞, k→ а1

При а1→∞, k→ а2

Якщо збільшення більшого з коефіцієнтів теплопередачі (а2) практично не дає збльшення k Збільшення меншого з коефіцієнтів а1, в 2-5 разів дає збільшення k в 2,5 разів.

б) інтенсифікаціятеплопередачі зарахунокоребрення стінок.

При передачі теплоти через циліндричну стінку термічний опір  і

 визначається не лише коефіцєнтом тепловіддачі, але і розмірами самих поверхонь. Таким чином, якщо а мале, то термічний опір можна збільшити шляхом збільшення відповідної поверхні.

Збільшити поверхню плоскої стінки, можна шляхом оребрення. При використанні методу оребрення необхідно керуватися наступним:

якщо а1<<а2, то ореорення поверхні доцільно проводити зі сторони а1 до тих пір, поки а1,F1, не досягне значення а2,F2, Подальше збільшення поверхні F1 мало ефективне.

Теплопередача через ребристу стінку.

в) інтенсифікація теплопередачі можлива за рахунок збільшення &.І. Це можна досягнути змінюючи температуру теплоносія, або схему руху.

24.4 Принцип розрахунку теплообмінних апаратів

По принципу дії всі теплообмінники можуть бути розділені на три групи: рекуперативні,регенеративні і змішувальні.

В рекуперативних теплообмінниках теплообмін здійснюється через розділ яючи п ер егор одку.

В регенеративних теплообмінниках передача теплоти здійснюєть ся почерговим омиванням поверхні гарячимі холодним тепло носієм.

В теплообмінниках змопування теплообмін здійснюється безпосереднім змішуванням гарячого і холодного теплоносія.

Зупинимося на розрахунку рекуперативних теплообмінників, які найчастіше зустрічаються в техніц. При розрахунку теплообмінників можуть зустрітися наступні задачі:

-визначення поверхні нагріву F, яка забезпечує передачу заданої кількості теплоти;

-визначення кількості теплоти Q яке може бути передане при відомій

поверхні F

- визначення кінцевих температур теплоносіїв при відомих значеннях F і Q

Основними розрахунковими рівняннями для рішення поставлеіих задач є

рівняння теплопередачі:

Q=k∙F∙Дtсер (24.12)

і рівнданя теплового балансу:

Q=G1c1(t’1-t’’1)= G2c2(t’2-t’’2)

Де G1 і G1 -витати гарячогоі холодного теплоносіїв;

c1 і с2 -відповідно теплоємності теплоносіїв;

tr1, і ts1, а також tr2, і ts2- початкова і кінцева температура гарячого і холоди ого теплоносіїв.

Оскільки температури гарячого і холодного теплоносіїв змінюється, то відповідно змінюється різниця температур. Тому в формулі (24.12) використовують ∆Дсер- середню різницю температур. Середня різниця температур залежить від схеми руху теплоносіїв.

.Якщо робочі середовища рухаються вздовж поверхні нагріву в одному напрямі такий потік руху рідин називається прямотечійним, зустрічний паралельний рух рідин називається протигоком. Якщо в різних поверхнях нагріву є обидва вигадки руху, такий рух називається змішаним і якщо обидва теплоносії рухаються в взаємно перпендикулярних площинах, такий рух називається перехресним

Рис. 24.4.1. Схема руху рідин в теплообмінниках. а) прямотечійний; б) протитечійнщ в) змішаний; г,д) перехресний: 1 - гарячий теплоносій; 2 -холодний теплоносій.

Середній температурний напір. Розглянемо теплообмінний апарат, який працює за схемою прямотоку.

Нехай в довільному перерізі температури теплоносіїв tr, і ts Температурний напір:

t’-t’=τ (24.13)

δQ=m1cp1∙dt’= m2cp2∙dt’

або

;

Продиференціюємо рівняння (24.13), підставивши в нього значення dtr I dts

Позначимо:

Тоді:

Підставивши значення δQ із (24.15) в рівняння (24.14), одержимо:

 або

Інтегруємо рівняння в межах від t’1- t’2 =τ1 до t’’1- t’’2 =τ2 і від 0 до А знаходимо:


;

Звідки:

 (24.16)

Проінтегруємо рівняння (24.15):

Q=( τ1-τ2)n

і підставимо в нього значенняп з рівняння (24.16):

де τ1=t’1- t’2 =Дmax - максимальний перепад температур для даного теплообмінника.

τ2 =t’’1- t’’2 =Дmin - мінімальний перепад температур.

Середній температурний напір можна записати та

 (24.17)

Аналогічну формулу можна одержати якщо розглядати протитечійну схему руху.

При  Дtcp можна визначити за формулою:

 (24.18)


25. Методи термодинамічного аналізу енерго-технологічних систем (ЕТС)

Енергетичний метод. Найпростішим методом термодинамічного аналізу ЕТС є енергетичний метод, оснований на першому законі термодинаміки. Цей метод дозволяє оцінити втрати енергії в технологічній системі і її окремих елементах, а також виявити участки, де втрати теплоти максимальні.

Суттєвим недоліком енергетичного методі є те, що він не враховує цінність різного виду енергії, її придатність. Тому більш широке поширення отримали ентропійнийі ексергетичний методи аналізу.

Ектроггійний метод термодинамічного аналізу оснований на першому і другому законі термодинаміки.

Дня термодинамічної оцінки ефективності системи (установки) необхідно відповісти на чотири запитання:

який ККД оборотного циклу, від яких факторів він залежить і що необхідно дляйого збільшення;

як розприділяються втрати по окремих елементах установки.

на удосконалення якої частини установки необхідно звернути увагу з метою зменшення ступ єн я необоротності.

У відповідності з щми задачами термодинамічний аналіз установки проводиться в два етапи: спочатку аналізується оборотний цикл, а потім необоротний.

ККД оборотного циклу:

Для того, щоб оцінити, наскільки даний дійсний (необоротний) цикл менш досконалій, чим теоретичний, вводять поняття відносного внутрішнього ККД циклу як відношення:

Ефективність реальної установки в цілому характеризується ефективним ККД ηв який представляє собою відношення кількості енергії (в формі теплоти або роботи), відданої зовнішньому споживачу до кількості енергії (в формі теплоти абороботи), підведеної доустановки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

рефераты
Новости