рефераты рефераты
Главная страница > Учебное пособие: Теоретичні основи теплотехніки  
Учебное пособие: Теоретичні основи теплотехніки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретичні основи теплотехніки

Сонячна енергія є виключно чистим джерелом енергії. її використ ання не зв'язано з забрудненням навколишнього середовища. Трудність її використання пов'язана із технічними проблемами її перетворення Сонячна радіація дуже розсіяна і має малу густину.

Одним із напрямків використання сонячної енергії є її перетворення в теплову.

Сонячні печі мають параболічний рефлектор. При діаметрі зеркала 1,5 м в тропічних умовах потужність, яку получають в фокусі такого пристрою складає 0,5 -1 кВт. Температура встановлюється на протязі години.

Дня одерлання дуже високих температур використовують декілька параболічних дзеркал (рис 22.2.1), таким чином, що вони мають спільний фокус. В системах, які складаються з декількох дзеркал додатково встановлюється плоске діеркало — геліостат, за допомогою якого слідкують з а сонцем і направляють проміннянанерухомідзеркала.

Рис. 22.2.1. Пристрій дляперетворення сонячної енергії в т еппову. 1 -рефлектор.

В лабораторії сонячної енергії Французького національного науково-дослідного центру, розміщеній в західних Піренеях за допомогою сонячної печі з дзеркалом діаметром біля 10 метрів, булипроведені роботи по очистці особливо тугоплавких металів.

Тепер встановлено параболічне діеркало діаметром 50 м. Воно виготовлене із 8000 невеликих дзеркал В фокусі одержують зображення сонця в виді кругу діаметром 50см. Таке дзеркало може забезпечити потужність 1200 кВт. Матеріал в центрі розппавляється і температура досягає 3000°С. За рахунок того,що тіглі обертаються, матеріал не виливається Тйким чином розплавляються оксиди кремнію і цирконію.

Використовують сонячну енергію для опалення, арячого водопостачання, нагріву води в басейнах. Складовою частиною є пластина-поглинач. Вода, чи повітря яке знаходиться в контакті з пластиною-поглиначем нагріваються.

Одним із шляхів використання сонячної енергії є акумулюання з можливістю забезпечення його рівномірного споживання.

Для акумулювання тепла необхідно забезпечити рівномірний нагрів. Використовують басейн з водою, парафін, камінь, шоуберову сіль Nа2SО410Н2O, яка плавиться при температурі 32°С, при цьому затрачується на руйнування кристалічної решітки 67 Вт∙г/кг.

26.3 Розробка раціональної схеми підприємства

Основним напрямком про розробці раціональної теплової схеми підприємства харчової промисловості є:

Вибір технологічного режиму з можливою низькою температурою процесів нагрівання.

Розвиток енерготехнологічного комбінування з метою найбільш повного використання генерованих енергоносіїв в виробничому процесі.

Основними напрямками енерготехнологічного комбінування є наступні: Комбінуванняпаровогокотлаі сушарки з метою використання димових газів для сушки продуктів, які використовуються в якості фуражу (сушка жому).

Комбінування парового котла із абсорбційною холодильною машиною з метою використання димових газів в якості теплоносія (птвоварені заводи).

Комбінування газотурбінної установки і сушки. Його метою є використання теплової енергії від палива і використання димових газів для скіпки.

Комбінування вистарної установки і скіпки. Для нагріву вологого гювітря в калорифері сушарки в якості енергоносія може бути використана пара або конденсат від випарної установки або те і інше одночасн о.

Комбінування випарної установки і ректифікаційної установки без посер едньо зв'язаних на лінії роз чину.

Комбінування випарної і абсорбційної холодильної машини. Ця комбінація може бути використана на цукрових заводах для зберігання буряку.

Комбінування випарної установки і вакуум кристалізаторів.


Міністерство освіти і науки України

Тернопільський державний технічний університет імені Івана Пулюя

Кафедра обладнання харчових технологій

МЕТОДИЧНІ ВКАЗІВКИ

до лабораторної роботи № 1

«Дослідження процессу адіабатного витікання газу (повітря) через сопло».

Тернопіль 2003


Дослідження процесу адіабатного витікання газу (повітря) через сопло

Мета роботи: поглибити знання в питаннях витікання газу (повітря), експериментальне визначити розхід і швидкість витікання повітря через сопло при різних тисках перед ним.

Теоретичні основи витікання

Витікання - це процес прискореного руху і азу в коротких каналах змінного перерізу.

Канал, в якому збільшується швидкість струмини І падає тиск робочого тіла, називають соплом, В соплах потенціальна енергія газу перетворюється в кінетичну енергію потоку, їх використовують в парових і газових турбінах, реактивних двигунах, турбо- і пароструменевих компресорах.

Канап, в якому сповільнюється рух робочого тіла і збільшується його тиск, називають дифузором. В дифузорах кінетична енергія потоку газу перетворюється в його потенціальну енергію, їх використовують в турбо- і пароструменевих компресорах, а також в вентиляторах.

Рухаючись в горизонтальному каналі, газ виконує роботу подоланая зовнішнього тиску о\ру) і зміни кінетичної енергії потоку:

В цьому випадку рівняння пертого закону термодинаміки мас вигляд (для газового потоку):

dg=dU+d(pv)+wdw=di+wdw (1.1)

де: g - питома теплота, то сприймається газом, Вт/м2;

U - внутрішня енерпя газу, Дж/кг;

р - тиск газу. Па;

v - питомий об'єм газу, м3/кг;

w - швидкість потоку, м/с;

і - ентальпія газу, Дж/кг. Рівняння першого закону термодинаміки мас вигляд:

dg-di-vdp (1.2)

Прирівнюючи формули (1,1) і (1,2) одержуємо:

wdw=-vdp (1,3)

Це значить, шо приріст кінетичної енергії визначається роботою зміни тиску vdp; при збільшенні швидкості потоку (dw>0) тиск газу (dр<0) зменшується, і навпаки.

При русі газу в каналі кінцевої довжини (рис. 1.1, а) його параметри змінюються від v1, р1, Т1, до vу, ру, Ту (рис. 1.1, б). Робота зміни тиску -  в рv - координатах зображується площею М1УКМ (рис 1.1, в).

В соплах і дифузорах контакт газу з каналом короткочасний, тому обміном з навколишнім середовищем нехтують. Це дозволяг розглядати витікання як адіабатний процес (dg=0). В цьому випадку рівняння (1.1) приймає вигляд wdw=-dі, а для каналу кінцевої довжини (сопла) після інтегрування:

 (1.4)

це: w1,wy - швидкість газу відповідно на вході і в гирлі каналу, м/с;

і1, іу - ентальпія відповідно на вході і в усті каналу, Дж/кг, Для сопел wу >>w1, тому величиною w1 частіше всього нехтують. В цьому випадку

 або  (1.5)

якщо ентальпія виражена в кілоджоулях на кілограм (кДж/кг).

Для газів що повністю або приблизно підпорядковуються рівнянню рv=RТ і справедливі умови і=СрТ, Сp=RК/(К-1), рівняння (1.5) приймає вигляд:


 (1.6)

де: К - показник адіабати, К=Сp/Сv;

R - питома газова стала, Дж/кг К,

Якшо відома площа перерізу в усті сопла f, то із умови нерозривності потоку масовий розхід газу:

 (1.7)

з врахуванням (1.7):


 (1.8)

Із (1.7) і (1.8) слідує, шо для даного газу (k-соnst) з початковими параметрами р1, і V1, швидкість його потоку і розхід визначається тільки відношенням тисків Рv/Р1=β. Так швидкість і розхід зростають при збільшенні Р1. Це досягається збільшенням абсолютного тиску Р, середовища, з якого витікає газ (див. рис. 1.1 а). При цьому тиск в усті сопла Ру рівний тиску за соплом P2: до тих пір, поки швидкість потоку не досягне швидкості поширення звуку а в даному середовищі. З цією швидкістю поширюються пружні хвилі тиску (розрідження). Тиск Р2, при якому (wv досягає швидкості звуку, називають критичним і позначають Ркр а відношення цього тиску до тиску Р1- критичним відношенням Ркр / Р1= β кр

Хвиля зменшення тиску в усті сопла, яке виникає при Р2 < Ркр (β < β кр) не може поширюватись в соплі назустріч течії, так як а=w, як наслідок для всіх значень Р2 < Ркр (β < β кр) В усті сопла тиск Р2 =Ркр,. Тому, якщо витікання газу докритнчне (β < β кр), в рівняннях (1.6) і (1.8) замість відношеннч Рv / Р1 використовують величину Р2 / Р1= β,, а якщо витікання критичне і зверхкритичне (β < β кр) величину β кр=β кр /Р1. Залежність wv =f(β) i M =f1(β) зображені на рис. 1,2.

Рис 1.2

В рівняннях (1.6) і (1.8) для двоатомних газів К=1,4 і β кр =0,528, для багатоатомних газів К =1,3, а β кр =0,546.

Витікання газу супроводжується помітними втратами кінетичної енергії потоку на тертя між шарами газу і газу зі стійками каналу.

Із-за вказаних втрат кінетичної енергії дійсна швидкість витікання w w д, менша теоретичної w. Величину

φ= wд/ w

називають швидкісним коефіцієнтом сопла, а відношення дійсного масового розходу газу Мд до теоретичного М - коефіцієнтом розходу μ


μ = Мд / М (1.10)

Дійсний масовий розхід за 1 с. визначають, використовуючи швидкість витікання і питомий об’єм vд газу в усті сопла:

Мд=fy

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

рефераты
Новости