рефераты рефераты
Главная страница > Учебное пособие: Теоретичні основи теплотехніки  
Учебное пособие: Теоретичні основи теплотехніки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретичні основи теплотехніки

або безпосереднім вимірюванням.

Лабораторна установка

Схема лабораторної установки показана на рис. 1.3.

Рис.1.3 1- пневм о циліндр; 2- впускний клапан; 3-випускний клапан; 4 -балон; 5 - запобіжний клапан 6-10- манометри; 7 - трубопроводи; 8 - фільтр; 9-редуктор тиску; 11 - сопло; 12 - стравлюючий клапан; 13 - ковпак; 14 -посудина; 15 – шкала 16 - вказівник.

Повітря Із пневмоциліндра 1 поступає в балон 4, з якого через фільтр 8, редуктор тиску 9 і сопло 11 поступає по трубопроводу 7 в ковпак ІЗ, який знаходиться в посудині 14, заповненій водою. Повітря, яке поступає в ковпак ІЗ, витісняючи з нього воду, піднімає його вверх. Висоту підйому ковпака 13, визначаємо по шкалі 15 за допомогою вказівника 16. Випуск повітря із ковпака 13 проводиться за допомогою стравлюючого клапана 12.

Діаметр ковпака дорівнює 150 мм.

Постановка дослідів

1.Одержати завдання на досліди на шість-вісіи значень Р ,

2.Розрахувати абсолютний тиск (Рабс< Па) для всіх значень β. Тиск в ковпаку 13 (Р2 Па) прийняти рівним атмосферному.

По тиску Р1абс визначити тиск Р1м для манометра 10 для всіх значень р,

З допомогою п не вм о циліндра і заповнити балон 4 стиснутим повітрям до тиску 2-3 атмосфери по манометру 6.

Редуктором тиску 9 відрегулювати тиск повітря Р1м по манометру 10 (при відкритому стравлюючому клапані 12).

По шкалі 13 відмітити положення показника 16

Закрнти стравлюючий клапан 12, одночасно включивши секундомір і визначити положення показника 16 по шкалі 15 при підйомі ковпака 13 на

Відкрити стравлюючий клапан 12 і відрегулювати редуктором тиску 9 по манометру 10 тиск Р1м (для другого значення 0) і продовжити досліди,

Результати дослідів занести а таблицю.

Обробка дослідних даних

1.По рівняннях (1,6) і (1.8) визначити теоретичну швидкість витікання повітря і теоретичний масовий розхід повітря.

2,По рівняннях (1.9) і (1,10) підрахувати швидкісний коефіцієнт сопла φ і коефіцієнту розходу μ.

3.Побудувати графік залежності Mд =f(β) і визначити дійсний максимальний розхід повітря Mд =f(β)

4,Побудувати графік залежності wд =f(β)

Контрольні питання

Пояснити роботу установки по її схемі.

Пояснити черговість включення установки.

Як перевести установку в слідуючий режим роботи,

4.Записати і пояснити рівняння першого закону термодинаміки для потоку.

Пояснити характер зміни розходу повітря із зміною величини β,

Що називають критичним розходом і швидкістю витікання

7.Що називають коефіцієнтом розходу/г і швидкісним коефіцієнтом розходу φ

8.Який канал називають соплом, а який дифузором?

9.Чому при Р1 > Ркр збільшення тиску перед соплом не збільшує розхід повітря?

10.Коли наступає критичний режим витікання ічим він хара ктеризусться

11.Як визначити розрахункове і дійсне максимально можливе значення р для витікання повітря через сопло лабораторної установки

12.Яку швидкість має повітря при витіканні із сопла


Список літератури

1.  Недужий НА.. Алабовский А.Н. Техническая термодинамика й теплопередача, К.: Вища школа, 1981, - 248 с.

2.  Чечеткин А,В., Занемонец Н,А. Тєплотехника, М.: Вьісшая школа, 1986. - 344 с.

3.  Міністерство освіти України

4.  Тернопільський Державний Технічний університет імені Івана Пулюя


Кафедра обладнання харчових технологій

Методичні вказівки

до лабораторної роботи № 2

«Дослідження теплообмінного апарату».

Тернопіль 2003


Дослідження теплообмінного апарату

Мета роботи; Вивчити процес теплообміну в теплообмінних апаратах, ознайомитись з методикою і'х випробування, одержати навики в проведенні експериментів, їх призначення, вплив різних факторів на інтенсивність теплообміну.

Загальні відомості

А Типи теплообмінних апаратів

Теплообмінниками називаються такі апарати, в яких в Збувається передача тепла від одного теплоносія до іншого (процес нагрівання або охолодження).

В теплосилових установках до теплообмінних апаратів належать; паровий котел, пароперегрівач, водяний економайзер, підігрівач повітря, конденсатор, деаератор та ін.

По принципу дії теплообмінні апарати розділяються на рекуперативні, регенеративні, змішувальні із внутрішнім тепловиділенням.

В рекуперативних теплообмінниках тепло від одного теплоносія до другого передасться через стінку (поверхню теплообміну є котлах, пароперегрівачах та ін.)

В регенеративних теплообмінниках тепло передається поперемінним омиванням гарячим і холодним тілом спеціальних металічних плит (насадів -акумуляторів тепла), що мас місце в доменному виробництві.

В теплообмінниках змішуючого типу (контактних) тепло передається безпосередньо змішуванням обох тіл. Вони найпростішої конструкції, в них повніше використовується тепло, але мають обмежену область використання.

Такі теплообмінники - градірні - мають місце на теплові»: електростанціях, в розімкну тих системах охолодження двигунів внутрішнього згоряння, компресорних станцій та ін.

4.Теплообмінники з внутрішнім тепловиділенням мають місце в ядерній енергетиці.

Б. Схеми теплообмінних апаратів

Рекуперативні теплообмінники виготовляються трубчатими або пластинчастими. В свого чергу трубчасті теплообмінники бувають одно-, дво- і багатоходові.

Зміна температури обох теплоносіїв вздовж поверхні нагріву залежить ВІД схеми їх руху.

Рис, 2, Графіки зміни температури вздовж теплообмінника а)при прямоточній схемі б)при протитечійній схемі

Схеми руху теплоносіїв показані на рис. 1.

Прямоточна.

Протитечійна.

Перехресна.

Комбінована.

В усіх теплообмінниках температура більш нагрітого теплоносія, що вілдас тепло зменшується від t’1 до t’’1 ( а температура менш нагрітого збільшується віл t’2 до t’’2; . Одночасно різниця температур (температурний напір) між теплоносіями вздовж поверхні нагрівання також буде змінюватись від ∆tmax до ∆tmin

Характер зміни температур для прямоточної і протитечійної схем руху теплоносіїв показано на рис, 2.

В розглянутих схемах руху теплоносіїв також будуть мати місце рівні термічні опори тепловіддачі для кожного теплоносія і термічні опори тепловіддачі взагалі.

Звідси видно, шо буде різна і інтенсивність теплопередачі в теплообмінниках.

Інтенсивність передачі тепла від одного до другого характеризується коефіцієнтом теплопередачі К. Розглянемо схему передачі тепла через елемент стінки (рис.3).

Кількість переданого тепла (потужність теплового потоку) визначається формулою теплопередачі:

Q=kF∆tсер (1)

Де Q - потужність потоку тепла, Вт;

Р - поверхня теплообміну, м2;

k - коефіцієнт теплопередачі, Вт/м2К

tсер - середній температурний напір - середиьологарифмічна різниця між температурами теплоносіїв, град, С.

Коефіцієнт теплопередачі визначається формулою:

  (2)

для циліндричних сттнок.

  (3)

для плоских та тонких циліндричних стінок.

де α1- коефіцієнт віддачі тепла від гарячого середовища до стінки. Вт/м" К;

δ- товщина стінки, м;

λ. - коефіцієнт теплопровідності стінки,:

а2- коефіцієнт віддачі тепла від стінки до холодного серелонища, Вт/м2 К;

dсер - середній діаметр, м.

Середній температурний напір залежить від схеми руху теплоносіїв в теплообміннику і їх фізичних властивостей (рис, 1 та рис. 2):

 (3)

Де ∆tmax-максимальна різниця між температурами теплоносіїв в °С;

∆tmin- мінімальна різниця між температурами теплоносіїв в °С;

∆tmax=t’1- t’2

для прямотоку

∆tmax=t’’1- t’’2

Якщо зміна температур теплоносіїв невелика, то можна використати середньоарифметичний напір, тобто при

 (3a)


Потужність теплового потоку Q, відданого гарячим і одержаного холодним носісм (нехтуючи втратами б навколишнє середовище), визначаємо з рівняння теплового балансу

Q=G1cp1(t’1- t’2)= G2cp2(t’’1- t’’2) (4)

де G1і G2 - масові витрати гарячого і холодного теплоносія, кг/сек;

cp1 і cp2- ізобарна теплоємність гарячого і холодного теплоносія, Дж/кг град.

Добуток  і називається умовним еквівалентом. Тоді рівняння (4) прийме вигляд:

 (4а)

Якщо позначити зміну температури через δt, то одержимо

 (4б)

Отже, чим більший еквівалент, тим менше змінюється температура даного теплоносія (мал, 2).

Якщо в теплообміннику тепло передається віл пари, що конденсується, то рівняння теплового балансу прийме вигляд:

Q=G2cp2(t’’2- t’2)=Gn(in-in) (Вт) (5)

де: in - ентальпія пари при вході в теплообмінник, Дж/кг;

ik - ентальпія конденсату, Дж/кг.

В. Випробовування теплообмінного апарату

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

рефераты
Новости