рефераты рефераты
Главная страница > Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления  
Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления

3.      Вектор  необходимо пересчитывать на каждом отрезке.

4.      В остальном данная задача аналогична задаче построения линейного сервомеханизма (пункт 5.5).

Используя скрипт AKOR_slegenie_so_skolz_intervalami_Modern, получили следующие результаты:

Рис.50. Графики решения уравнения Риккати.

Рис.51. Графики фазовых координат.

Рис.52. График управления.

Выводы: при сравнении полученных результатов, можно сказать, что различия в фазовых координатах при наличии трех участков и при наличии одного участка несущественные. Если сравнивать скорость вычислений и используемые ресурсы, то скорость увеличивается почти в 3 раза, а памяти требуется в 3 раза меньше для решения поставленной задачи. В точках соединения участков наблюдаются скачки, связанные с тем, что требуется значительные затраты на управление, но для первой координаты этот скачок незначительный.


6. Синтез наблюдателя полного порядка

Наблюдателями называются динамические устройства, которые позволяют по известному входному и выходному сигналу системы управления получить оценку вектора состояния. Причем ошибка восстановления .

Система задана в виде:

Начальные условия для заданной системы .

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Построим наблюдатель полного порядка и получим значения наблюдаемых координат  таких, что:

В качестве начальных условий для наблюдателя выберем нулевые н.у.:

Ранг матрицы наблюдаемости:

 - матрица

наблюдаемости.

.

.

Т. е. система является наблюдаемой.

Коэффициенты регулятора:

,

тогда

Собственные значения матрицы :

Коэффициенты наблюдателя выберем из условия того, чтобы наблюдатель был устойчивым, и ближайший к началу координат корень матрицы  лежал в 3 – 5 раз левее, чем наиболее быстрый корень матрицы . Выберем корни матрицы

 

Коэффициенты матрицы наблюдателя:

.

Используя скрипт Sintez_nablyud_polnogo_poryadka, получили следующие результаты:

Рис.53. Графики решения уравнения Риккати.

Рис.54. Графики фазовых координат.

Рис.55. Графики управлений.

Выводы: Так как система является полностью наблюдаема и полностью управляема, то спектр матрицы  может располагаться произвольно. Перемещая собственные значения матрицы  левее, относительно собственных значений матрицы  мы улучшаем динамику системы, однако, наблюдатель становится более чувствителен к шумам.


Литература

1.  Методы классической и современной теории автоматического управления: Учебник в 5 – и т. Т.4: Теория оптимизации систем автоматического управления / Под ред. Н.Д. Егупова. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 748 с.

2.  Краснощёченко В.И.: Методическое пособие: «Методы теории оптимального управления».


Приложение.

 

PlotTimeFrHaract.m

clc

clear all

close all

b1 = 9;

b0 = 5;

 

a4 = 0.1153;

a3 = 1.78;

a2 = 3.92;

a1 = 14.42;

a0 = 8.583;

 

% syms s w

% W_s_chislit = b1 * s + b0;

% W_s_znamen = s * (a4 * s^4 + a3 * s^3 + a2 * s^2 + a1 * s + a0);

%

% W_s_obj = W_s_chislit/W_s_znamen;

 

%A_w = collect(simplify(abs(subs(W_s_obj, s, i*w))))

 

%----------------------Построение АЧХ-------------------------------------%

figure('Name', '[0,10]');

w = 0 : 0.01 : 10;

A_w = sqrt((b0^2 + b1^2.*w.^2)./((-a1*w.^2+a3*w.^4).^2+(a0*w-a2*w.^3+a4*w.^5).^2));

plot(w,A_w,'k', 'LineWidth', 2);

grid on

xlabel('w')

ylabel('A(w)')

title('Function ACHX(w)')

%-------------------------------------------------------------------------%

 

r_ch = roots([b1 b0])

r_zn = roots([a4 a3 a2 a1 a0 0])

 

%----------------------Построение ФЧХ-------------------------------------%

figure('Name', '[0,100]');

w = 0 : 0.01 : 100;

fi_w = (atan(w/0.5556)-atan(w/0)-atan(w/13.5832)-atan((w-2.7677)/0.5850)...

-atan((w+2.7677)/0.5850) - atan(w/(0.6848)))*180/pi;

plot(w,fi_w, 'k', 'LineWidth', 2);

grid on

xlabel('w')

ylabel('fi(w)')

title('Function FCHX(w)')

%-------------------------------------------------------------------------%

 

%----------------------Построение АФЧХ------------------------------------%

figure('Name', '[0,100]');

w = 0 : 0.01 : 100;

A_w = sqrt((b0^2 + b1^2.*w.^2)./((-a1*w.^2+a3*w.^4).^2+(a0*w-a2*w.^3+a4*w.^5).^2));

fi_w = (atan(w/0.5556)-atan(w/0)-atan(w/13.5832)-atan((w-2.7677)/0.5850)...

-atan((w+2.7677)/0.5850) - atan(w/(0.6848)));

polar(fi_w,A_w, 'k');

grid on

xlabel('Re(W(jw))')

ylabel('Im(W(jw))')

title('Function AFCHX(fi_w,A_w)')

%-------------------------------------------------------------------------%

 

%----------------------Построение ЛАЧХ------------------------------------%

figure('Name', '[0,100]');

w = -100 : 0.01 : 100;

LA_w = 20*log(sqrt((b0^2 + b1^2.*w.^2)./((-a1*w.^2+a3*w.^4).^2+(a0*w-a2*w.^3+a4*w.^5).^2)));

plot(w,LA_w,'k', 'LineWidth', 2);

grid on

xlabel('w')

ylabel('L(w)')

title('Function L(w)')

%-------------------------------------------------------------------------%

 

%----------------------Построение ФАЧХ------------------------------------%

%-------------------------------------------------------------------------%

 

%----------------------Построение h(t)------------------------------------%

figure('Name', '[0,50]');

t = 0 : 0.01 : 50;

h_t = 0.0024 * exp(-13.5832.*t) - 0.2175 * exp(-0.6848.*t)...

+ 0.1452 * exp(-0.5850.*t).* cos(2.7677.*t)...

- 0.2217 * exp(-0.5850.*t).* sin(2.7677.*t)...

+ 0.5825 .* t + 0.0699;

plot(t,h_t, 'k', 'LineWidth', 2);

grid on

xlabel('t')

ylabel('h(t)')

title('Function h(t)')

%-------------------------------------------------------------------------%

 

%----------------------Построение k(t)------------------------------------%

figure('Name', '[0,50]');

t = 0 : 0.01 : 50;

k_t = - 0.0329 * exp(-13.5832.*t) + 0.1489 * exp(-0.6848.*t)...

- 0.6986 * exp(-0.5850.*t).* cos(2.7677.*t)...

- 0.2721 * exp(-0.5850.*t).* sin(2.7677.*t)...

+ 0.5826;

plot(t,k_t, 'k', 'LineWidth', 2);

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

рефераты
Новости