рефераты рефераты
Главная страница > Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления  
Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления

Подставляя необходимые данные в выше приведенные формулы, получим следующие моменты и моментные функции:

Числовое значение найденных моментов:


Моментные функции:

Заметим, что моменты и моментные функции совпадают с моментами и моментными функциями, найденными в пункте (а).

Из этого следует, что функционал, значения , управление и минимальная энергия будут иметь точно такие же числовые значения и аналитические выражения, как и в пункте (3.1).

Оптимальное управление имеет вид:

Проверим правильность полученного решения.

Эталонные значения координат в начальный и конечный момент времени:

,

,

Найденные значения координат в начальный и конечный момент времени:

,

,

Вычислим погрешность полученных результатов:


,

,

Ниже представлены графики полученного решения с помощью скрипта Optimal_L_problem_moments.m.

Рис. 18. Графики фазовых координат системы при переходе из  в .

 

 

Рис. 19. Графики выходных координат системы при переходе из  в .

Рис.20. График оптимального управления .

Выводы: Задача перевода системы из начальной точки в конечную с помощью L-проблемы моментов в пространстве состояний и в пространстве вход-выход была решена с точностью до 12-го знака после запятой. Результаты, полученные при переводе системы из начальной точки в конечную, полностью совпадают.


4. Нахождение оптимального управления с использованием грамиана управляемости (критерий – минимизация энергии)

Система имеет вид:

с начальными условиями:

,

.

Составим матрицу управляемости и проверим управляемость системы:

.

Составим грамиан управляемости для данной системы:

Найдем грамиан по формуле:

Тогда управление имеет вид:

.

или

Ниже представлен график оптимального управления полученного с помощью скрипта Gramian_Uprav.m.:

Рис.21. График оптимального управления .

Графики фазовых координат аналогичны, как и в оптимальной L – проблеме моментов.

Сравним управление, полученное в начальной и конечной точках в пунктах 3 и 4 соответственно:

 и

Выводы: Как видно, значения граничных управлений совпадают. А это значит, что задача перевода объекта из начального состояния в конечное решена с высокой степенью точности и с минимальной энергией.

Графическое сравнение оптимальных управлений из пунктов 3 и 4:

Рис.21. Сравнение графиков оптимального управления .

 

5. Аналитическое конструирование оптимальных регуляторов (АКОР)

5.1 Стабилизации объекта управления на полубесконечном интервале времени

Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме

Необходимо получить закон управления

минимизирующий функционал вида

Начальные условия для заданной системы

Моменты времени  фиксированы. Матрицы  — симметричные неотрицательно определенные:

матрица  — положительно определенная:

Матричное дифференциальное уравнение Риккати имеет вид:

Если линейная стационарная система является полностью управляемой и наблюдаемой, то решение уравнения Риккати при  стремится к установившемуся решению  не зависящему от  и определяется следующим алгебраическим уравнением:

В рассматриваемом случае весовые матрицы  и  в функционале не зависят от времени.

Оптимальное значение функционала равно

и является квадратичной функцией от начальных значений отклонения вектора состояния.

Таким образом, получаем, что при  оптимальное управление приобретает форму стационарной обратной связи по состоянию

где  — решение алгебраического матричного уравнения Риккати.


5.1.1. Решение алгебраического уравнения Риккати методом диагонализации

Для решения данной задачи найдем весовые матрицы  и :

Выберем произвольно , тогда

Взяв значения  из решения задачи L – проблемы моментов получим:

Матрицы системы имеют вид:

, .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

рефераты
Новости