рефераты рефераты
Главная страница > Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления  
Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Математическая модель в пространстве состояний линейного стационарного объекта управления

Рис.32. Графики коэффициентов регулятора обратной и прямой связи.


Рис.33. График возмущающего воздействия.

Рис.34. График вспомогательной вектор – функции.

Рис.35. Графики фазовых координат.

Рис.36. График управления.

Рис.37. График возмущающего воздействия.

Рис.38. График вспомогательной вектор – функции.

 

 

Рис.39. Графики фазовых координат.

Рис.40. График управления.

Выводы: По графикам фазовых координат при различных воздействиях видно, что влияние возмущающего воздействия не существенно и фазовые координаты устанавливаются в ноль. При этом видно, что графики первой фазовой координаты при различных воздействиях мало отличаются друг от друга, т.е. система отрабатывает любое возмущение.

5.4 Задача АКОР для отслеживания известного задающего воздействия. I подход

Система задана в виде:

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Время слежения .

Задающее воздействие в виде системы ДУ

Начальные условия для воздействия:

.

Введем расширенный вектор состояния и расширенные матрицы

,

,

.

Тогда новое описание системы имеет вид:

с начальными условиями: .

Решением уравнения Риккати будет матрица:

с н.у.

Тогда оптимальное управление, находится по формуле:

Используя скрипт AKOR_slegenie_na_konech_interval_I_podxod, получили следующие результаты:

Рис.41. Графики решения уравнения Риккати.

Рис.42. Графики коэффициентов регулятора обратной и прямой связи.

Рис.43. Графики фазовых координат.

Рис.44. График управления.

Выводы: На данном этапе была решена задача АКОР-слежения. В качестве отслеживаемого воздействия была взята исходная система, но с другими начальными условиями, поэтому графики фазовых координат отличаются от заданных, но только на начальном участке движения.

5.5 Задача АКОР для отслеживания известного задающего воздействия. II подход (линейный сервомеханизм)

Система задана в виде:

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Задающее воздействие имеет вид:

, .

Время слежения

Введём вспомогательную вектор-функцию , ДУ которой определяется

,

,

НУ определяются из соотношения


Зная закон изменения  и , можно определить управление:

.

Используя скрипт AKOR_slegenie_na_konech_interval_II_podxod, получили следующие результаты:

Рис.45. Графики решения уравнения Риккати.

Рис.46. График задающего воздействия.

Рис.47. Графики коэффициентов регулятора обратной и прямой связи.

Рис.48. Графики фазовых координат.

Рис.49. График управления.


Выводы: На данном этапе была решена задача построения линейного сервомеханизма. В качестве отслеживаемого воздействия была задана экспоненциальная функция. Анализируя выше приведенные графики, можно сказать, что все состояния заданной системы, особенно первая фазовая координата, отслеживается с заданной точностью.

5.6 Задача АКОР – слежения со скользящими интервалами

Пусть интервал времени  является объединением нескольких отрезков. Известно некоторое задающее воздействие  заданное аналитическим выражением, причем информация о задающем сигнале на следующем отрезке времени поступает только в конце предыдущего. Таким образом, зная задающий сигнал только на одном отрезке времени, мы будем синтезировать управление на этом отрезке.

Разобьем весь интервал на 3 равных отрезка.

Данная задача похожа на задачу отслеживания известного задающего воздействия, заданного аналитическим выражением, но с некоторыми изменениями:

1.      Поскольку в уравнение Риккати относительно матрицы  входят только параметры системы и функционала качества, то решать его будем один раз на первом отрезке, так как на остальных отрезках решение будет иметь тот же вид, но будет смещено по времени:

2.      Начальными условиями для системы на каждом отрезке будет точка, в которую пришла система на предыдущем отрезке:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

рефераты
Новости