рефераты рефераты
Главная страница > Дипломная работа: Обратимые матрицы над кольцом целых чисел  
Дипломная работа: Обратимые матрицы над кольцом целых чисел
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Обратимые матрицы над кольцом целых чисел

б3) Если ¹0,  и  получаем (р-1)4×р2×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в
пункте б1)

б4) Если ¹0, ,  и  получаем
(р-1)5×р×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в пункте б2)

б5) Пусть ¹0, ,  и . Из того, что , получаем . Пусть . Тогда преобразовывая (2.4) получаем, что  однозначно выражается через  и все остальные элементы.

Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1) штук.

Таким образом, общее количество матриц удовлетворяющих условию пункта б) подсчитывается по формуле
 (р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах б1-б5).

Значит формула (р-1)3р5(р+1) для случая 1) при условии (2.2) верна.

2) Пусть ,  (количество их р-1),  (количество высчитывается по формуле (1.5)) и  (по р штук). Тогда из (2.1) получаем

.

Тогда количество таких матриц вычисляется по формуле

(р-1)3р4(р+1)        (2.6)

Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что ,  и .

Но при этих условиях не учитываются матрицы вида  с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида  с определителем обращающимся в нуль, количество которых нужно вычесть.

Докажем, что количество матриц в обоих случаях одинаково:

а) ,  и . Из (2.1) получаем равенство , , а из того что  получаем что, например, элемент  однозначно выражается через элемент  (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).

б) ,  и . Из (2.1) получаем равенство , . А из  можем однозначно выразить, например, элемент  через элемент  (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).

3) Пусть , ,  (количество их p-1),  (количество высчитывается по формуле (1.5)) и  (по р штук).

Тогда количество таких матриц вычисляется по формуле

(р-1)[(р-1)2р(р+1)]×р×р×р                  (2.7)

Этими этапами мы перебрали все случаи невырожденных матриц порядка 3. складывая формулы (2.3), (2.6) и (2.7), полученные в этапах 1), 2) и 3) получаем формулу для нахождения количества обратимых матриц порядка 3 матриц над полем Zp

(р-1)3р3(р+1)(р2+р+1)   (2.8)

3. Общая формула для подсчета обратимых матриц над полем Zp.

Используя алгоритм, описанный в предыдущих пунктах, для выведения формулы подсчета количества обратимых матриц, можем получить частные формулы для матриц произвольных порядков.

Например:

Для матриц порядка 4:

(р-1)4р6(р+1)(р2+р+1)(р3+р2+р+1).

Для матриц порядка 5:

(р-1)5р10(р+1)(р2+р+1)(р3+р2+р+1)( р4+р3+р2+р+1), и т.д.

Анализируя полученные результаты, можем сделать выводы, что общая формула для получения количества обратимых матриц порядка n над полем Zp выглядит так:

Данную формулу тождественными преобразованиями можно привести к виду:


§3. Обратимые матрицы над кольцом Zn  

Из теоремы доказанной в § 1 следует, что для определителей матриц A и B выполняется равенство |A·B|=|A|·|B|.

Для обратимых матриц A и B следует A·B=E.Следовательно |A·B|=|A|·|B|=|E|=1.

Таким образом, получаем: определитель обратимой матрицы является обратимым элементом.

Попытаемся сосчитать количество обратимых матриц над некоторыми кольцами вычетов по составному модулю.

Обратимые матрицы над Z4.

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Всего различных матриц второго порядка над Z4: 44=256.

В Z4 обратимыми элементами являются 1и3. Рассмотрим сколько обратимых матриц с определителем равным 1: |A|=ad-bc=1.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости