рефераты рефераты
Главная страница > Учебное пособие: Синхронные машины. Машины постоянного тока  
Учебное пособие: Синхронные машины. Машины постоянного тока
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Синхронные машины. Машины постоянного тока

Рис. 2.62 – Схема двигателя с последовательным возбуждением, зависимости его момента и частоты вращения от тока якоря

Двигатель с последовательным возбуждением. В этом двигателе (рис. 2.62, а) ток возбуждения Iв = , поэтому магнитный поток Ф является некоторой функцией тока якоря Iа. Характер этой функции изменяется в зависимости от нагрузки двигателя. При токе якоря < (0,8 ÷ 0,9) Iном, когда магнитная система машины не насыщена Ф = kф, причем коэффициент пропорциональности kФ в значительном диапазоне нагрузок остается практически постоянным. При дальнейшем возрастании тока якоря поток Ф растет медленнее, чем , и при больших нагрузках (Iа > Iном) можно считать, что Ф = const. В соответствии с этим изменяются и зависимости n = f(Ia) и M – f(Ia).

При токе якоря < (0,8 ÷ 0,9) Iном частота вращения

,                   (2.78)

где с1 и с2 – постоянные.

Следовательно, скоростная характеристика двигателя n = f (Ia) имеет форму гиперболы (рис. 2.62, б).

При токе якоря > Iном частота вращения

,            (2.78а)

где с'1 и с'2 – постоянные.

В этом случае скоростная характеристика n = f(Ia) становится линейной.

Аналогично может быть получена зависимость электромагнитного момента от тока якоря–M = f(Ia). При < (0,8 ÷ 0,9) Iиом электромагнитный момент

,                                   (2.79)

где c3 – постоянная.

Следовательно, моментная характеристика М = f() имеет форму параболы (рис. 2.62, б).

При > Iном электромагнитный момент

,                                                  (2.79а)

где с'3–постоянная.

В этом случае зависимость M = f(Ia) становится линейной.

Механические характеристики n = f(M) (см. рис. 2.63, а) могут быть построены на основании зависимостей ni = f(Ia) и M=f(Ia). При токе якоря, меньшем (0,8 ÷ 0,9) Iном, частота вращения изменяется по закону


,                      (2.80)

где с»1–постоянная.

При токе якоря, большим Iном, зависимость n = f(M) становится линейной.

Кроме естественной характеристики 1, путем включения добавочных пусковых сопротивлений rп в цепь якоря можно получить семейство реостатных характеристик 2, 3 и 4. Эти характеристики соответствуют различным значениям rп2, rп3 и rп4; причем чем больше гп, тем ниже располагается характеристика.

Из рис. 2.63, а следует, что механические характеристики рассматриваемого двигателя (естественная и реостатные) являются «мягкими» и имеют гиперболический характер.

Рис. 2.63 – Механические и рабочие характеристики двигателя с последовательным возбуждением

При малых нагрузках частота вращения n резко возрастает и может превысить максимально допустимое значение (двигатель идет в «разнос»). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода и при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка составляет (0,2 –0,25) Iном; только двигатели очень малой мощности (десятки ватт) используют для работы в устройствах, где возможен холостой ход. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой); применение ременной передачи или фрикционной муфты для включения недопустимо.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют в различных электрических приводах, особенно там, где имеют место изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.). Объясняется это тем, что мягкая характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем жесткая характеристика двигателя с параллельным возбуждением. При жесткой характеристике частота вращения n почти не зависит от момента М, поэтому мощность

,                                     (2.81)

где с4 – постоянная.

При мягкой характеристике двигателя с последовательным возбуждением частота вращения n обратно пропорциональна , вследствие чего

,                                   (2.81а)

где c'4 – постоянная.

Поэтому при изменении нагрузочного момента в широких пределах мощность Р2, а следовательно, мощность Р1 и ток Iа у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением. Кроме того, они лучше переносят перегрузки; например, при заданной кратности перегрузки по моменту М/Мном = kM ток якоря в двигателе с параллельным возбуждением увеличивается в kM раз, а в двигателе с последовательным возбуждением–только в  раз. По этой же причине двигатель с последовательным возбуждением развивает больший пусковой момент, так как при заданной кратности пускового тока Iп/Iном = ki пусковой момент его Мп = k2ном, в то время как у двигателя с параллельным возбуждением Мп = kiМном.

На рис. 2.63, б приведены рабочие характеристики двигателя с последовательным возбуждением. Характеристики n = f(P2) и M = f(Р2), как следует из рассмотренных ранее положений, являются нелинейными; характеристики P1 = f (P2), Iа = f(P2) и η = f(Р2) имеют примерно такую же форму, как и у двигателя с параллельным возбуждением.

Рис. 2.64 – Схема двигателя со смешанным возбуждением и его механические характеристики

Двигатель со смешанным возбуждением. В этом двигателе (рис. 2.64, а) магнитный поток Ф создается в результате совместного действия двух обмоток возбуждения – параллельной и последовательной. Поэтому его механическая характеристика (рис. 2.64, б, кривые 3 и 4) располагается между характеристиками двигателей с параллельным (прямая 1) и последовательным (кривая 2) возбуждением. В зависимости от соотношения м. д. с. параллельной и последовательной обмоток при номинальном режиме можно приблизить характеристику двигателя со смешанным возбуждением к характеристике 1 (при малой м. д. с. последовательной обмотки) или к характеристике 2 (при малой м. д. с. параллельной обмотки). Одним из достоинств двигателя со. смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе, так как его частота вращения холостого хода n0 имеет конечное значение.

2.11 Пуск в ход электродвигателей постоянного тока

Для пуска двигателей постоянного тока могут быть применены три способа:

1) прямой пуск, при котором обмотка якоря подключена непосредственно к сети;

2) реостатный пуск с помощью пускового реостата, включаемого в цепь якоря для ограничения тока при пуске;

3) пуск путем плавного повышения напряжения, подаваемого на обмотку якоря.

Прямой пуск. Обычно в двигателях постоянного тока падение напряжения Iном∑r во внутреннем сопротивлении цепи якоря составляет 5–10% от Uном, поэтому при прямом пуске ток якоря Iп = Uном/∑r = (10 ÷ 20) Iном, что создает опасность поломки вала машины и вызывает сильное искрение под щетками. По этой причине прямой пуск применяют в основном для двигателей малой мощности (до нескольких сотен ватт), в которых сопротивление ∑r относительно велико, и лишь в отдельных случаях–для двигателей с последовательным возбуждением мощностью в несколько киловатт. При прямом пуске таких двигателей Iп = (4 ÷ 6) Iном.

Переходный процесс изменения частоты вращения n и тока якоря ia в процессе пуска определяется нагрузкой двигателя и его электромеханической постоянной времени Тм. Для установления характера изменения n и ia при пуске двигателя с параллельным возбуждением будем исходить из уравнений:

;                                                    (2.82а)

,                           (2.82б)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

рефераты
Новости