рефераты рефераты
Главная страница > Учебное пособие: Синхронные машины. Машины постоянного тока  
Учебное пособие: Синхронные машины. Машины постоянного тока
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Синхронные машины. Машины постоянного тока

Рис. 1.11 – Общий вид роторов турбогенератора (а), гидрогенератора (б) и синхронного двигателя (в):

1 – контактные кольца, 2 – кольцевые бандажи, 3 – ротор, 4 – металлические клинья,

5 – вентилятор, 6 – вал, 7 – обмотка возбуждения, 8 – полюсы, 9 – пусковая обмотка

Гидрогенераторы. Эти машины приводятся во вращение сравнительно тихоходными гидравлическими турбинами, частота вращения которых составляет 50–500 об/мин, поэтому их выполняют с большим числом полюсов и явнополюсными роторами (рис. 1.11, б). Диаметр ротора достигает у мощных машин 16 м при длине 1,75 м (в генераторах мощностью 590 – 640 МВ·А), т.е. для таких генераторов отношение l/D = 0,11 ÷ 0,20.

Гидрогенераторы мощностью свыше нескольких десятков мегавольт-ампер выполняют с вертикальным расположением вала (рис. 1.12). На роторе такого гидрогенератора с помощью фланца укрепляют ротор турбины, вследствие чего роторы имеют общие подшипники. В верхней части гидрогенератора на одном с ним валу обычно устанавливают вспомогательные машины: возбудитель генератора с подвозбудителем и дополнительный синхронный генератор, предназначенный для питания электродвигателей автоматического масляного регулятора турбины.

В конструкции гидрогенераторов с вертикальным расположением вала весьма ответственной частью является упорный подшипник (подпятник), который воспринимает массу роторов генератора и турбины, давление воды на лопасти турбины, а также динамические усилия.


Рис. 1.12 – Общий вид гидрогенератора с вертикальным расположением вала:

1 – верхняя крестовина, 2 – статор, 3 – полюсы ротора. 4 – обод ротора, 5 – вал

В зависимости от расположения подпятника гидрогенераторы подразделяют на подвесные и зонтичные. В подвесных гидрогенераторах (рис. 1.13, а) подпятник располагают над ротором генератора на верхней крестовине, а один или два направляющих подшипника – под ним; при этом весь турбоагрегат подвешен на подпятнике к этой крестовине. В зонтичных гидрогенераторах (рис. 1.13, б) подпятник располагают под ротором на нижней крестовине или на крышке турбины, а генератор – над подпятником в виде зонта. Крестовины представляют собой мощную опорную конструкцию, состоящую из центральной втулки и ряда радиальных балок. Быстроходные гидрогенераторы выполняют обычно подвесного типа; тихоходные – зонтичного.

Наиболее тяжелые условия работы ротора гидрогенератора имеют место при аварийном отключении машины от сети. При этом частота вращения ротора сильно возрастает, так как приложенный к нему вращающий момент от турбины остается достаточно большим (быстро прекратить поступление большой массы воды в турбину практически невозможно), а тормозной момент самого генератора из-за резкого сброса нагрузки сильно уменьшается.

Рис. 1.13 – Конструктивные схемы гидрогенераторов:

подвесного (а) и зонтичного (б) типов:

1 – верхняя крестовина, 2 – подпятник, 3 – направляющие подшипники, 4 – ротор,

5 – статор, 6 – нижняя крестовина, 7 – фланец вала, 8 – турбина, 9 – фундамент,

10 – направляющий подшипник турбины

Достигаемую при этих условиях частоту вращения называют угонной; она не должна превышать 2,8–3,5 номинальной частоты вращения. Для уменьшения угонной частоты вращения и сокращения времени выбега ротора до его остановки в гидрогенераторах устанавливают тормоза.

Для подпятников, наоборот, наиболее тяжелые условия работы имеют место при пуске и остановке гидрогенератора, так как масляный клин (масляная пленка) в подпятнике образуется только при достаточно большой частоте вращения вала. Для облегчения работы подпятников в гидрогенераторах с вертикальным расположением вала применяют конструкции подпятников с составными самоустанавливающимися сегментами, с гидравлической опорой и автоматическим распределением нагрузки между сегментами и др.

Гидрогенераторы мощностью, меньшей нескольких десятков мегавольт-ампер, выполняют обычно с горизонтальным расположением вала. В последнее время значительное распространение получили гидрогенераторы капсульной конструкции (рис. 1.14), которые окружены водонепроницаемой оболочкой – капсулой. При таком устройстве генератор и турбина образуют единую конструкцию, а поток воды, проходящий через турбину, омывает капсулу, что способствует более интенсивному ее охлаждению. Капсульные гидрогенераторы устанавливают на низконапорных гидроэлектростанциях; это позволяет существенно уменьшить объем здания электростанции.

Гидрогенераторы из-за небольшой частоты вращения ротора не имеют таких габаритных ограничений, как турбогенераторы. Но в связи со стремлением уменьшить их габариты, массу и стоимость в машинах большой мощности* применяют непосредственное охлаждение обмоток статора, обмоток ротора и сердечника статора дистиллированной водой. При тех же основных размерах мощность гидрогенератора с водяным охлаждением можно увеличить более чем в два раза по сравнению с гидрогенератором, имеющим поверхностное воздушное охлаждение.

Рис. 1.14 – Общий вид гидрогенератора капсульного типа:

1 – капсула, 2 и 3 – статор и ротор генератора, 4 – направляющий аппарат турбины,

5 – ротор турбины, 6 и 8 – подшипники, 7 – вал

Непосредственное водяное охлаждение обмоток статора и ротора выполняют так же, как в турбогенераторах путем пропускания воды через полые проводники обмоток (рис. 1.15, а). Сердечник статора охлаждается водой, циркулирующей по трубам, которые проходят сквозь отверстия в листах сердечника. Часто также применяют систему смешанного непосредственного охлаждения, при которой обмотка статора имеет водяное охлаждение, а обмотка ротора – воздушное охлаждение. На рис. 1.15, б показана система воздушного охлаждения обмотки ротора, называемая поперечной, так как охлаждающий воздух проходит по каналам 7, расположенным поперек обмотки возбуждения. Эти каналы образуются между двумя расположенными рядом проводниками обмотки возбуждения, один из которых имеет поперечные выемки для прохода воздуха. Охлаждающий воздух подается к обмотке возбуждения по каналам 10, проходящим в сердечнике обода ротора, и по каналам 8 и 9, проходящим в сердечнике полюса. Необходимый для циркуляции воздуха напор создается центробежной силой при вращении ротора. Часть охлаждающего воздуха попадает из каналов 10 обода в междуполюсное пространство и совместно с воздухом, выходящим из каналов 7, используется для охлаждения статора. В СССР выпускают различные типы гидрогенераторов мощностью до 640 MB·А.

Синхронные компенсаторы. Эти машины предназначены для генерирования или потребления реактивной мощности с целью улучшения коэффициента мощности сети и регулирования ее напряжения. Их обычно выполняют явнополюсными с горизонтальным расположением вала; работают они при частоте вращения 750 – 1000 об/мин. При мощности до 25MB·А синхронные компенсаторы имеют воздушное охлаждение, а при больших мощностях – водородное.


Рис. 1.15 – Устройство для охлаждения обмотки ротора

гидрогенераторов водой и воздухом:

1 – полюс, 2 – изоляция обмотки, 3 – полые проводники обмотки,

4 – канал для охлаждающей воды, 5 – обод ротора, 6 – проводники обмотки,

7 – каналы для прохода воздуха между проводниками обмотки,

8, 9, 10 – каналы для подачи воздуха к обмотке возбуждения

В СССР синхронные компенсаторы выпускают серийно мощностью от 10 до 100 MB·А. Для них характерно наличие роторов облегченной конструкции, так как вал ротора не должен передавать значительный вращающий момент (компенсатор обычно работает в режиме ненагруженного электродвигателя). Устанавливают синхронные компенсаторы в помещениях или под открытым небом. Во втором случае их выполняют с герметизированным корпусом; герметизация упрощается тем, что выводить наружу конец вала не требуется. Обмотку возбуждения у синхронных компенсаторов рассчитывают на большую (чем у генераторов и электродвигателей) м.д.с., так как они должны обеспечивать работу с перевозбуждением.

Дизель-генераторы. Эти генераторы предназначены для привода во вращение от двигателей внутреннего сгорания (дизелей). Их выполняют, как правило, явнополюсными с горизонтальным расположением вала. Дизель-генераторы имеют обычно один подшипник, в качестве второй опоры ротора используют подшипник самого дизеля, вал которого жестко соединен с валом ротора генератора. Возбудитель устанавливают непосредственно на валу ротора или же он приводится от него во вращение с помощью клиноременной передачи.

В СССР дизель-генераторы выпускают серийно мощностью от нескольких кВ·А до нескольких МВ·А при частотах вращения от 100 до 1500 об/мин.

Синхронные двигатели. Их выполняют, как правило, с горизонтальным расположением вала (см. рис. 1.11, в), хотя некоторые мощные двигатели имеют и вертикальное расположение. Эти машины изготовляют на щитовых или стояковых подшипниках, с самовентиляцией, а в некоторых случаях с независимым воздушным охлаждением.

В СССР выпускают синхронные двигатели мощностью до нескольких десятков МВт при частотах вращения от 100 до 3000 об/мин. При частотах вращения от 100 до 1000 об/мин электродвигатели выполняют явнополюсными, а при 1500 и 3000 об/мин – неявно-полюсными.

1.4 Работа синхронного генератора при холостом ходе

Э.д.с. в обмотке якоря. При холостом ходе магнитный поток генератора создается обмоткой возбуждения. Этот поток направлен по оси полюсов ротора и индуктирует в фазах обмотки якоря э.д.с. Первая гармоника Е0[1] этой э.д.с. определяется по той же формуле, что и первая гармоника э.д.с. для асинхронной машины:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

рефераты
Новости