рефераты рефераты
Главная страница > Учебное пособие: Синхронные машины. Машины постоянного тока  
Учебное пособие: Синхронные машины. Машины постоянного тока
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Синхронные машины. Машины постоянного тока

Поток обратной последовательности равномерно пересекает то продольную, то поперечную ось ротора. Вследствие этого среднее значение индуктивного сопротивления машины для токов обратной последовательности можно принять равным

.                                           (1.60)

Если демпферная обмотка расположена по всей окружности якоря, то можно считать, что

.                                                 (1.61)

Сопротивления для токов обратной последовательности можно получить экспериментально, если включить синхронную машину в сеть и вращать ротор с синхронной частотой против направления вращения поля.

Токи двойной частоты, возникающие в демпферных обмотках и массивном роторе, вызывают дополнительные потери, из-за которых может возникнуть опасный нагрев ротора и снижение к. п. д. машины. Увеличение сечения стержней демпферной обмотки с целью снижения активного сопротивления и потерь не всегда дает положительный эффект, так как при двойной частоте сильно сказывается эффект вытеснения тока. Взаимодействие м. д. с. возбуждения ротора и потока обратной последовательности статора создает знакопеременный колебательный момент, вызывающий вибрацию машины и шум.

Система токов нулевой последовательности 0, IB0, IC0 создает во всех трех фазах м. д. с, совпадающие по времени, так как

İA0= İВ0 = İC0                                                          (1.62)

На рис. 1.61 показаны магнитные поля, образуемые этими токами в каждой из фаз якоря для простейшего случая сосредоточенной обмотки. Легко заметить, что для основной гармоники магнитный поток в воздушном зазоре от токов нулевой последовательности равен нулю. Вследствие этого токи нулевой последовательности могут создавать только потоки рассеяния Фσ0 и пульсирующие потоки гармоник, кратных трем.

Рис. 1.61 – Потоки рассеяния, образуемые токами нулевой последовательности в обмотках якоря

При диаметральной обмотке якоря потоки рассеяния токов нулевой последовательности замыкаются так же, как потоки рассеяния для токов прямой последовательности, а поэтому приблизительно равны и соответствующие индуктивные сопротивления х0 = xsa. При укорочении шага обмотки индуктивное сопротивление уменьшается и достигает минимума при шаге обмотки, равном 2/3 полюсного деления, так как в этом случае во всех пазах проводники нижнего и верхнего слоев принадлежат разным фазам.

Следовательно, при y= (2/3)τ полный ток нулевой последовательности каждого из пазов будет равен нулю, а индуктивное сопротивление будет определяться потоком лобовых частей. При рекомендуемом для синхронных машин шаге y = 0,8τ индуктивное сопротивление х0 уменьшается почти в три раза по сравнению с его значением при диаметральной обмотке. Таким образом, обычно 0,3xsa < х0 < xsa.

Экспериментально величину х0 можно определить, если включить все фазы обмотки якоря последовательно и присоединить их к источнику однофазного переменного тока. Обмотку возбуждения при этом нужно замкнуть накоротко, а ротор привести во вращение с номинальной частотой. В этом опыте U = 3I0x0, откуда x0 = U/(3I0). Наличие короткозамкнутой обмотки возбуждения на роторе уменьшает дифференциальный поток рассеяния, а вращение ротора выравнивает фазные сопротивления, которые при неподвижном роторе оказались бы различными из-за различия в положении проводников отдельных фаз относительно оси обмотки возбуждения. Если на роторе имеется мощная демпферная обмотка, то обмотка возбуждения оказывает незначительное влияние на величину х0, т.е. ее можно не замыкать накоротко л не приводить во вращение.

Несимметричные установившиеся короткие замыкания. Простейшим примером несимметричной нагрузки является однофазное короткое замыкание. Этот режим помимо методического имеет и большое практическое значение, так как его результаты можно использовать при определении токов аварийного короткого замыкания.

При однофазном коротком замыкании (рис. 1.62, а)

;  и .


Из условия (2–108) получим для этого режима

.                                            (1.63)

Следовательно, в данном случае во всех трех фазах возникают токи прямой, обратной и нулевой последовательностей, хотя и имеют место условия İВ1 + İВ2 + İВ0 = İВ = 0 и İС1 + İС2 + İСо =İС = 0.

Вращающийся магнитный поток возбуждения индуктирует во всех фазах э.д.с. только прямой последовательности Ė1 = Ė0. Пренебрегая активными сопротивлениями, для фазы АX можно написать

                               (1.64)

или с учетом (1.63)

EA = jiA(xnp + x2 + x0)/3,                                                  (1.65)

откуда установившийся ток однофазного короткого замыкания

.                                                     (1.66)


Рис. 1.62 – Схема однофазного короткого замыкания (а) и векторная диаграмма токов и напряжений при этом режиме (б)

Сравнивая (1.66) с величиной установившегося тока трехфазного короткого замыкания Iкз = Е0сн, получаем, что Iк1 > Iкз, так как xпр = xсн; х2 < хсн и х0 < хсн. Величину напряжений для фаз ВY и СZ определим из уравнений:

UB = EB–jIBlxnv–jiBix2–jIB0x0;                                             (1.67)

Uc = Ec–jiclxnv–jiC2x2–jiC0x0.                                              (1.68)

На рис. 1.62, б показана векторная диаграмма, построенная по (1.64), (1.67) и (1.68) для всех трех фаз. Построение начинается с вектора ĖА и отстающего от него по фазе на 90° вектора İА. Векторы İA1, İA2 и İА0 совпадают с вектором İA по фазе и составляют ⅓ от него по величине. Остальные векторы симметричных составляющих соответственно ориентируются по току в фазе А – X. Дальнейшие построения производятся обычным порядком с учетом того, что векторы фазных э. д. с. сдвинуты относительно друг друга на 120°.

Двухфазное короткое замыкание, например, фаз А X и ВY (рис. 1.63, а) характеризуется следующими соотношениями: İС = 0; ÙAB = 0; ÙA=ÙB в силу симметрии схемы и İА = İВ, так как при положительном направлении тока в фазе А X (например, от конца фазы к началу), в фазе ВY ток будет иметь отрицательное направление. Токи нулевой последовательности в данном режиме равны нулю, так как

.                                                   (1.69)

Рис. 1.63 – Схема двухфазного короткого замыкания (а) и векторные диаграммы токов и напряжений при этом режиме (б, в)

Так как в фазе СZ сумма токов прямой и обратной последовательностей равна нулю

.                                                   (1.70)

и для нее İС1 = – İС2, то, очевидно, во всех фазах токи прямой и обратной последовательностей будут равны по модулю (рис. 1.63, б). Для определения установившегося тока двухфазного короткого замыкания İк2 будем исходить из фазных напряжений:

                                              (1.71)

При этом линейное напряжение

Из векторной диаграммы (рис. 1.63, б) следует, что


.       (1.72)

Откуда

.                                            (1.73)

Следовательно,

.                                                  (1.74)

Так как İАİВ = 2İА = (İА1–İВ1) +(İА2–İВ2) = 2İАВ1 получаем

.                                      (1.75)

Векторная диаграмма напряжений при двухфазном коротком замыкании изображена на рис. 1.63, в.

Внезапное (аварийное) короткое замыкание. При одно- и двухфазном внезапных коротких замыканиях ток короткого замыкания больше, чем при трехфазном аварийном коротком замыкании, в соответствии с тем, что при установившемся режиме ток при двух- и однофазном коротких замыканиях больше, чем при трехфазном. В случае аварийных несимметричных коротких замыканий возникают, так же как при трехфазном коротком замыкании, апериодическая и периодическая составляющие тока. Начальное действующее значение периодической составляющей тока I'уст.макс можно определять по формулам (1.66) или (1.75), подставляя вместо хпр величину х"d или x'd. При этом индуктивные сопротивления х2 и х0 остаются практически одинаковыми как для установившихся, так и для переходных режимов. В остальном определение тока короткого замыкания при несимметричных режимах производится так же, как и при трехфазном коротком замыкании.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

рефераты
Новости