рефераты рефераты
Главная страница > Учебное пособие: Синхронные машины. Машины постоянного тока  
Учебное пособие: Синхронные машины. Машины постоянного тока
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Синхронные машины. Машины постоянного тока

Важную роль в процессе коммутации играют щетки, которые по своей физической природе являются нелинейными сопротивлениями. При быстром увеличении плотности тока под сбегающим краем щетки сопротивление щетки резко возрастает, что ведет к уменьшению остаточного тока или полному его устранению, даже в случае, когда коммутация является неидеальной. В электрических машинах большой и средней мощностей применяют электрографитированные щетки с большим падением напряжения в скользящем контакте (2,4–3,5 В на пару щеток). Такие щетки получают в электропечах путем нагревания заготовок из угля и кокса до температуры 2000–2500° С, при этом они принимают структуру графита, а поэтому называются электрографитированными. На рис. 2.41 показаны типичные зависимости падения напряжения 2Δищ в контакте «коллектор – щетка» от плотности тока Δщ для электрографитированных (кривая 1) и угольно-графитных (кривая 2) щеток. Соответствующим выбором марки щетки часто удается улучшить коммутацию машины. В тихоходных машинах применяют твердые щетки с наибольшим переходным сопротивлением. Для быстроходных машин (при линейной скорости 40 м/с и выше) приходится брать мягкие щетки, хотя они быстрее изнашиваются и имеют меньшее переходное сопротивление.

Рис. 2.41 – Зависимости падения, напряжения под щетками от плотности тока

Таблица 2.2

Типы щеток Марка

Номинальная плотность тока, А/см2

Переходное падение напряжения на пару щеток, В Окружная скорость, м/с

Удельное нажатие, Н/см2

Коэффициент трения Область применения
Угольно-графитные УГ4 7 2 12 2–2,5 0,25 Для генераторов и двигателей со средними условиями коммутации
Графитные 611М 10–12 2 40 2 – 2,5 0,25 Для генераторов и двигателей с облегченными условиями коммутации
Элек-трогра-фитиро-ванные

ЭГ2А

ЭГ4

ЭГ8

ЭГ14

10

12

10

10–11

2,6

2

2,4

2,5

45

40

40

40

2–2,5

1,5–2

2–4

2–4

0,23

0,25

0,25

0,25

Для генераторов и двигателей со средними и затрудненными условиями коммутации
Медно-графит-ные МГ2 МГ4

20

15

0,5

1,1

20

20

1,8–2,3

2–2,5

0,2

0,2

Для низковольтных генераторов и контактных колец

Технические данные наиболее часто используемых марок щеток и области их применения приведены в табл. 2.2. Подбор щеток обычно производится экспериментально.

На характер коммутации оказывает также влияние дифференциальный поток рассеяния, проходящий по коронкам зубцов, и поток главных полюсов.

Дифференциальный поток рассеяния по коронкам зубцов Фz (см. рис. 2.42, а) замыкается через сердечник добавочного полюса. При вращении якоря изменяется положение середины паза с коммутируемыми секциями относительно сердечника (см. положения паза, показанные на рис. 2.42, а, б), что приводит к изменению потока Фz и периодическому изменению индуктивности секции Lc.


Рис. 2.42 – Изменение дифференциального потока рассеяния, проходящего по коронкам зубов, при перемещении паза с коммутируемыми секциями:

1 – сердечник добавочного полюса, 2 – паз

Величина реактивной э.д.с. будет при этом определяться выражением

                                            (2.60)

и может существенно отличаться от средней э.д.с. ер.ср. В результате возникает искрение под щетками. Для уменьшения дифференциального потока рассеяния целесообразно увеличивать зазор под добавочным полюсом. В машинах большой мощности этот зазор обычно делают равным 8 – 15 мм, соответственно увеличивая число витков обмотки добавочных полюсов. Иногда, для того чтобы уменьшить скорость изменения потока Фz, на наконечники дополнительных полюсов устанавливают короткозамкнутые витки. Такой виток выполняют из меди или бронзы в виде фланца; он одновременно служит конструктивной деталью, крепящей катушку добавочного полюса. Однако, улучшая коммутацию в стационарных режимах, короткозамкнутые витки будут ухудшать коммутацию при резких изменениях тока якоря.

Влияние главных полюсов на процесс коммутации заключается в том, что поток Фв, созданный обмоткой возбуждения, частично попадает в зону коммутации. При симметричной магнитной системе и чередующейся полярности главных полюсов, как это обычно имеет место, величина результирующего потока в зоне коммутации не изменяется, т.е. сохраняется условие ер.ср + ек.ср = 0. Однако поле в зоне коммутации деформируется, усиливаясь, с одной стороны, и уменьшаясь, с другой. На рис. 2.43 показано распределение индукции Вк в зоне коммутации: а – созданной м.д. с. Fдo6 добавочных полюсов; б – созданной м.д.с. Fв главных полюсов; в-результирующего магнитного поля. Нарушение симметрии магнитного поля в зоне коммутации приводит к неблагоприятному характеру коммутации; при этом токосъем переносится на край щетки[3].

Еще большие расстройства коммутации могут возникнуть из-за нарушения магнитной симметрии машины, например, в результате технологических отклонений при установке щеткодержателей, главных или добавочных полюсов, когда изменяется поле в зоне коммутации. Чтобы уменьшить влияние поля главных полюсов на процесс коммутации, снижают величину полюсного перекрытия αi = bi/τ, так чтобы соблюдалось условие (1–αi)τ ≥ 2,5bз.к В машинах малой мощности, кроме того, увеличивают ширину наконечника добавочного полюса, который «экранирует» зону коммутации от потока главного полюса.


Рис. 2.43 – Распределение индукции Вк в зоне коммутации

В машинах с компенсационной обмоткой м.д. с. главных полюсов меньше, а следовательно, влияние поля главных полюсов на процесс коммутации меньше. Это позволяет несколько увеличивать полюсную дугу, т.е. коэффициент полюсного перекрытия αi.

Особенно велико влияние поля главных полюсов на коммутацию в машинах с несимметричной магнитной системой и в машинах с расщепленными полюсами. При этом изменение потока возбуждения приводит к изменению результирующего потока в коммутационной зоне, а следовательно, и к изменению среднего значения коммутирующей э.д.с. Это обстоятельство затрудняет создание мощных машин с расщепленными полюсами (электромашинных усилителей и регулируемых одноякорных преобразователей).

Оценка коммутационной напряженности машины. Качество коммутации проверяется визуально или при помощи специальных приборов (индикаторов искрения) во время контрольных стендовых испытаний. Однако часто, чтобы составить прогноз работы машины в эксплуатации, необходимо оценить напряженность коммутации теоретически. Такая необходимость возникает как при проектировании машины, так и при выборе типа машины для определенного технологического процесса, характеризующегося величиной и частотой перегрузок, вибрациями машины, частотой пусков, реверсов и т.д.

Наиболее распространенным критерием напряженности коммутации является средняя величина реактивной э. д. с, так как искрение возникает из-за неполной ее компенсации. Однако вполне определенного допускаемого значения реактивной э.д.с. установить не удалось, и различные заводы и фирмы придерживаются своих норм, ограничивая значение этой э.д. с. 3–10 В. Так, например, по рекомендациям завода «Электросила» в машинах большой мощности с петлевой и лягушачьей обмотками реактивная э.д.с. ер.ср при номинальной нагрузке не должна превосходить 7–10 В (меньшие значения относятся к быстроходным машинам с n ≥ 3000 об/мин). При волновых обмотках, которые применяют в машинах с током до 400 А и в тихоходных машинах с большим числом полюсов, реактивная э.д. с. не должна превышать 5 В. В машинах средней мощности с диаметром якоря до 30 см, в которых обычно применяют волновые обмотки с несколькими витками в секциях, значение ер.ср должно быть не более 2,5 – 3 В.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

рефераты
Новости