рефераты рефераты
Главная страница > Книга: Электричество и магнетизм  
Книга: Электричество и магнетизм
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Книга: Электричество и магнетизм

10-5<γ<103  См/м;

в) для проводников γ > 103 См/м. В основном – это металлы. Наиболее хорошими проводниками среди них являются медь и серебро, у которых удельная электропроводность имеет порядок 107 См/м.

В электростатике рассматривается случай неподвижных зарядов, когда ј=0, следовательно,  Е=0, т.е. внутри проводника при электростатическом равновесии электрическое поле отсутствует.

Из дифференциальной формы теоремы Остроградского- Гаусса

divE=ρ/ε0

следует, что при Е=0, ρ=0, т.е. внутри проводника отсутствуют объемные заряды. Это означает, что заряд проводника концентрируется на его поверхности в слое атомарной толщины. Конечно, внутри проводника имеются как положительные, так и отрицательные заряды, но они взаимно компенсируются и, в целом, внутренние области проводника нейтральны.

Если нейтральный проводник помещается во внешнее электрическое поле, то поверхностные заряды на проводнике перераспределяются так, что создаваемое ими внутри проводника поле полностью компенсирует внешнее поле, в результате чего суммарная напряженность поля внутри проводника равна нулю.

Явление перераспределения поверхностных зарядов на проводнике при его помещении во внешнее электрическое поле называется электрической индукцией. В случае электростатического внешнего поля индукция называется электростатической.

Под влиянием внешнего поля происходит также перераспределение поверхностных зарядов и в случае, если проводник заряжен.

Выделим на поверхности проводника элемент поверхности ΔS и построим прямой цилиндр высотой h, пересекающий поверхность. Применим к этому цилиндру теорему Гаусса:

                                            (5)

где S – поверхность цилиндра, Q – заряд в объеме цилиндра.

Внутри цилиндра заряд имеется только на поверхности проводника и характеризуется поверхностной плотностью         σ и, следовательно, Q= σS. Внутри проводника поле равно нулю, поэтому поток Е через часть поверхности цилиндра, находящуюся в объеме проводника,  равен нулю. Поток через часть поверхности цилиндра, находящуюся вне проводника слагается из потоков через основание цилиндра и его боковую поверхность. В пределе высоту h цилиндра возьмем сколь угодно малой (h→0), следовательно, и площадь боковой поверхности цилиндра и поток Е через боковую поверхность будут сколь угодно малыми. Поэтому в пределе h→0 останется лишь поток через основание цилиндра:

,                                          (6)

где Еn – нормальная компонента Е. Положительным направлением нормали в теореме Гаусса считается внешняя нормаль к замкнутой поверхности. В рассматриваемом случае это означает, что положительная нормаль направлена во внешнюю сторону от поверхности проводника. При h→0, с учетом (6) равенство (5) примет вид:

,

откуда

.

Таким образом, нормальная компонента напряженности поля у поверхности проводника однозначно определяется поверхностной плотностью зарядов.

Найдем тангенциальную составляющую вектора напряженности Еτ. Рассмотрим замкнутый контур L, пересекающий поверхность проводника, верхняя часть которого идет параллельно поверхности  вне проводника, а внутренняя часть – внутри проводника (рис 1). Внутри проводника напряженность Е=0, следовательно, отсутствует и тангенциальная компонента поля.  Допустим, вне проводника Еτ≠0. Возьмем положительный заряд, и будем перемещать его по замкнутому контуру в направлении, указанном на рис. 1 стрелками. На участке АВ поле совершает положительную работу. Участки ВС и ДА могут быть сколь угодно малыми, следовательно,  и работа может быть сколь угодно малой. При перемещении заряда на участке СД  работа равна нулю, т.к. поле внутри проводника отсутствует. Таким образом, в результате перемещения заряда по замкнутому контуру электрическое поле производит положительную работу и больше в системе никаких изменений не происходит, что противоречит закону сохранения энергии. Следовательно, тангенциальная компонента напряженности поля  должна быть равна нулю. Другими словами, равенство нулю тангенциальной компоненты электрического поля у поверхности проводника является следствием потенциальности электростатического поля и отсутствия поля внутри проводника.

Равенство Еτ= 0 означает, что напряженность электрического поля вблизи поверхности проводника направлено перпендикулярно  поверхности и равно σ/ε0.

Из равенства нулю поля внутри проводника следует, что во всех точках проводника потенциал имеет одно и то же значение, т.е. любой проводник в электростатическом поле представляет собой эквипотенциальную область и его поверхность является эквипотенциальной.

Итак, в состоянии равновесия избыточных зарядов внутри проводника нет – вещество внутри проводника электрически нейтрально. Поэтому удаление вещества из некоторого объема внутри проводника (создание замкнутой полости) поля нигде не изменит, т.е. никак не отразится на равновесном расположении зарядов. Это значит, что избыточный заряд распределяется на проводнике с полостью также как и на сплошном – по его наружной поверхности.

Таким образом, если в полости нет электрических зарядов, электрическое поле в ней равно нулю. Внешние заряды, в частности, заряды на наружной поверхности проводника не создают в полости внутри проводника никакого электрического поля. Именно на этом основана электростатическая защита – экранирование тел, например измерительных приборов, от влияния внешних электростатических полей. Практически сплошной проводник-оболочка может быть заменен достаточно густой металлической сеткой.

Рассмотрим случай, когда полость не пустая, а в ней есть какой -то электрический заряд Q. Пусть внешнее пространство заполнено проводящей средой. Поле в ней при равновесии равно нулю, значит,  среда электрически нейтральна. Так как поле внутри проводника равно нулю, то равен нулю и поток вектора Е сквозь замкнутую поверхность, окружающую полость. По теореме Гаусса это означает, что алгебраическая сумма зарядов внутри этой замкнутой поверхности также равна нулю. Таким образом, алгебраическая сумма индуцированных зарядов на поверхности полости равна по модулю и противоположна по знаку алгебраической сумме зарядов внутри этой полости.

При равновесии заряды, индуцированные на поверхности полости,  располагаются так, чтобы  полностью скомпенсировать снаружи полости поле зарядов, находящихся внутри полости.

Поскольку проводящая среда внутри электрически нейтральна, то она не оказывает никакого влияния на электрическое поле, поэтому если ее удалить, оставив только проводящую оболочку вокруг полости, от этого поле нигде не изменится и вне оболочки оно останется равным нулю. То есть, поле зарядов окруженных проводящей оболочкой и зарядов, индуцированных на поверхности полости равно нулю во всем внешнем пространстве.

Замкнутая проводящая оболочка разделяет все пространство на внутреннюю и внешнюю части, в электрическом отношении совершенно не зависящие друг от друга. Это надо понимать так: после любого перемещения зарядов внутри оболочки никаких изменений поля во внешнем пространстве не произойдет, а значит,  распределение зарядов на внешней поверхности оболочки останется прежним. То же относится и к полю внутри полости (если там есть заряды) и к распределению индуцированных на стенках полости зарядов – они также останутся неизменными в результате перемещения зарядов вне оболочки. Это справедливо в рамках электростатики.

Электростатический вольтметр

Принцип действия вольтметра основан на электростатическом взаимодействии заряженных проводников. Измерительный механизм прибора состоит из неподвижного электрода 1 (рис 2), представляющего собой металлическую камеру, и подвижного алюминиевого электрода 2 в форме пластинки. Камера укреплена на изоляционной колонке 3 из вещества, обладающего большим сопротивлением на высоких частотах (керамики стеатита). Пластинка 2 закреплена на оси 4, которая установлена вертикально с помощью двух нитей 5 из бронзы (растяжки). Пружины 6, укрепленные на стойке 7,  растягивают эти нити. Измеряемое напряжение подводится одним полюсом к камере, а другим – к пластинке. Камера и пластинка заряжаются

противоположными по знаку зарядами, и возникающая сила притяжения втягивает подвижную пластинку внутрь неподвижной камеры. Противодействующий момент создается упругими силами растяжек.

Для быстрого успокоения подвижной пластинки конец ее помещается в поле постоянного магнита 8. Торможение возникает благодаря силам, действующим со стороны магнитного поля магнита на ток,  индуцируемый в той части пластинки, которая движется между полюсами магнита.

Так как обычно в таких электрических приборах моменты, действующие на подвижную часть малы, то для отсчета показаний прибора пользуются световым лучом, отраженным от небольшого легкого зеркала 9, укрепленного на оси 4.

Для уменьшения влияния внешних электрических полей прибор снабжен экраном, который заземляется. Теория электростатического вольтметра дает следующее выражение для угла отклонения α подвижной части:

,

где U- напряжение, подаваемое на вольтметр, С- емкость между электродами, k – коэффициент, зависящий от упругих свойств пружин. Из формулы видно, что угол α зависит как от квадрата напряжения U, так и от изменения емкости С. Подбором размеров и формы электродов удается сделать величину dC/dα  постоянной. Поэтому, обычно шкала электростатических вольтметров имеет квадратичный характер.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29

рефераты
Новости