рефераты рефераты
Главная страница > Дипломная работа: Высшая математика для менеджеров  
Дипломная работа: Высшая математика для менеджеров
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Высшая математика для менеджеров

,

если эти пределы существуют и конечны. Обозначение:

 = .                       (8.8)

Пример 3.30. Вычислить ò dx/(x+2).

Решение. Обозначим t=x+2, тогда dx=dt, ò dx/(x+2) = ò dt/t = lnïtï+C = = lnïx+2ï+C.

Пример 3.31. Найти ò tg x dx.

Решение. ò tg x dx = ò sin x/cos x dx = - ò d(cos x)/ cos x. Пусть t=cos x, тогда ò tg x dx = - ò dt/t = - lnïtï+C = - lnïcos xï+C.

Пример 3.32. Найти ò dx/sin x.

Решение.

Пример 3.33. Найти .

Решение.  =  

Пример 3.34. Найти ò arctg x dx.

Решение. Обозначим u=arctg x, dv=dx. Тогда du = dx/(x2+1), v=x, откуда ò arctg x dx = x arctg x - ò x dx/(x2+1) = x arctg x + 1/2 ln(x2+1) +C; так как ò x dx/(x2+1) = 1/2 ò d(x2+1)/(x2+1) = 1/2 ln(x2+1) +C.

Пример 3.35. Вычислить ò ln x dx.

Решение. Применяя формулу интегрирования по частям, получим: u=ln x, dv=dx, du= 1/x dx, v=x. Тогда ò ln x dx = x lnx - ò x 1/x dx = = x lnx - ò dx = x lnx - x + C.

Пример 3.36. Вычислить ò ex sin x dx.

Решение. Обозначим u = ex, dv = sin x dx, тогда du = ex dx, v=ò sin x dx= - cos x Þ ò ex sin x dx = - ex cos x + ò ex cos x dx. Интеграл ò ex cos x dx также интегрируем по частям: u = ex, dv = cos x dx Þ du=exdx, v=sin x. Имеем: ò ex cos x dx = ex sin x - ò ex sin x dx. Получили соотношение ò ex sin x dx = - ex cos x + ex sin x - ò ex sin x dx, откуда 2 ò ex sin x dx = - ex cos x + ex sin x + С.

Пример 3.37. Вычислить J = ò cos(ln x)dx/x.

Решение. Так как dx/x = d(ln x), то J= ò cos(ln x)d(ln x). Заменяя ln x через t, приходим к табличному интегралу J = ò cos t dt = sin t + C = sin(ln x) + C.

Пример 3.38. Вычислить J = .

Решение. Учитывая, что  = d(ln x), производим подстановку ln x = t. Тогда J = .

Пример 3.39. Вычислить интеграл J = .

Решение. Имеем: . Поэтому = = =.

Пример 3.40. Можно ли применить формулу Ньютона-Лейбница к интегралу ?

Решение. Нет, нельзя. Если формально вычислять этот интеграл по формуле Ньютона-Лейбница, то получим неверный результат. Действительно, = .

Но подынтегральная функция f(x) =  > 0 и, следовательно, интеграл не может равняться отрицательному числу. Суть дела заключается в том, что подынтегральная функция f(x) =  имеет бесконечный разрыв в точке x = 4, принадлежащей промежутку интегрирования. Следовательно, здесь формула Ньютона-Лейбница неприменима.

Пример 3.41. Вычислить интеграл .

Решение. Подынтегральная функция определена и непрерывна при всех значениях х и, следовательно, имеет первообразную F(x)= .

По определению имеем: = .

По формуле Ньютона-Лейбница,

= F(b) - F(0) =  += ;

= = .

8.2Использование интегралов в экономических расчетах

Пример 3.42. Определить объем продукции, произведенной рабочим за третий час рабочего дня, если производительность труда характеризуется функцией

f(t) = 3/(3t +1) + 4.

Решение. Если непрерывная функция f(t) характеризует производительность труда рабочего в зависимости от времени t, то объем продукции, произведенной рабочим за промежуток времени от t1 до t2 будет выражаться формулой

V =.

В нашем случае

V = = ln 10 + 12 - ln 7 - 8 = ln 10/7 + 4.

Пример 3.43. Определить запас товаров в магазине, образуемый за три дня, если поступление товаров характеризуется функцией f(t) = 2t + 5.

Решение. Имеем:

V =.

Пример 3.44. Пусть сила роста (см.6.1) описывается некоторой непрерывной функцией времени d t = f(t), тогда наращенная сумма находится как

S = P exр  d t dt,

а современная величина платежа P = S exр(- d t dt).

Если, в чаcтности, d t является линейной функцией времени: d t = d o + at, где d o - величина силы роста для t = 0, a - годовой прирост, то

d t dt =  (d o + at)dt = d o n + an2/2;

множитель наращения exр(d o n + an2/2). Если сила роста изменяется по геометрической прогрессии d t = d o at, где d o - начальное значение процентной ставки, a - годовой коэффициент роста, тогда

d t dt = d o at dt = d o at /lna= d o(an -1)/lna;

множитель наращения exр(d o(an -1) / lna).

Предположим, что начальный уровень силы роста равен 8%, процентная ставка ежегодно увеличивается на 20% (a=1,2), срок ссуды 5 лет. Множитель наращения в этом случае составит exр (0,08 (1,25-1) / ln1,2) » » exр 0,653953 » 1,921397.

Пример 3.45. Выше при анализе непрерывных потоков платежей предполагалось, что годовая сумма ренты R равномерно распределяется на протяжении года. На практике, особенно в инвестиционных процессах, этот поток может существенно изменяться во времени, следуя какому-либо закону. Если этот поток непрерывен и описывается некоторой функцией R t = f (t), то общая сумма поступлений за время n равна .

В этом случае наращенная по непрерывной ставке за период от 0 до n сумма составит:

S = .

Современная величина такого потока равна

A = .

Пусть функция потока платежей является линейной: Rt = Ro + at, где Ro - начальная величина платежа, выплачиваемого за единицу времени, в которой измеряется срок ренты. Вычислим современную величину A, пользуясь правилами интегрирования определенного интеграла:

A = = + .

Обозначим A1 = , A2 = .

Имеем: A1 =  = - Ro/dê= - Ro/d(-eo) = - Ro/d(-1) = = Ro(-1)/d. A2 = . Вычислим неопределенный интеграл  по частям: u = t, dv = dt Þ du = dt, v =  = - /d, тогда = - t/d + 1/d = - t/d (t+1/d) +C. Следовательно, A2 = -a t/d (t+1/d)ê= ((1- )/d - n)a/d.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости