рефераты рефераты
Главная страница > Дипломная работа: Высшая математика для менеджеров  
Дипломная работа: Высшая математика для менеджеров
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Высшая математика для менеджеров

Аналогично частной производной функции z = f(x, y) по аргументу y называется производная этой функции по y при постоянном x. Обозначения:

.

Частными производными второго порядка функции z = f(x, y) называются частные производные от ее частных производных первого порядка. Если первая производная была взята, например, по аргументу x, то вторые производные обозначаются символами .

Пусть функция z = f(x, y) определена в области D и точка Mo(xo, yo) будет внутренней точкой этой области. Говорят, что функция f(x, y) в точке Mo(xo, yo) имеет максимум (минимум), если ее можно окружить такой окрестностью

(xo - d, xo + d; yo - e, yo+ e),

чтобы для всех точек этой окрестности выполнялось неравенство

f(x,y) £ f(xo,yo) ( f(x,y) ³ f(xo,yo)).

Функция многих переменных может иметь максимум или минимум (экстремум) только в точках, лежащих внутри области определения функции, в которой все ее частные производные первого порядка равны нулю или не существует хотя бы одна из них. Такие точки называются критическими. Названные условия являются необходимыми условиями экстремума, но еще не достаточными (они могут выполняться и в точках, где нет экстремума). Чтобы критическая точка была точкой экстремума, должны выполняться достаточные условия. Сформулируем достаточные условия экcтремума для функции двух переменных. Пусть точка Mo(xo, yo) - критическая точка функции z = f(x, y), т.е. , и функция z = f(x, y) имеет непрерывные вторые частные производные в некоторой окрестности точки Mo(xo, yo). Обозначим  . Тогда:

1) если D > 0, то функция z имеет экстремум в точке Mo: максимум при A < 0, минимум при A > 0;

2) если D < 0, то экстремума в точке Mo нет;

3) если D = 0, то требуется дополнительное исследование.

Пример 3.28. Исследовать функцию z = y4 - 2xy2 + x2 + 2y + y2 на экстремум.

Решение. Находим частные производные: = - 2y2 + 2x, = 4y3 - 4xy +2 +2y. Для отыскания критических точек решим систему уравнений: .

Итак, Mo(1,-1) -единственная точка, “подозрительная на экстремум”. Находим вторые частные производные: , следовательно, A=2, B=4, С=10, D = 4, т.е. D > 0, функция имеет экстремум в точке Mo - минимум (A>0). Вычислим z min = (-1)4 - 2×1×(-1)2 +1 - 2 +1 = -1.

В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или результатов опытов. Одним из распространенных приемов построения таких формул является метод наименьших квадратов. Изложим идею этого способа, ограничиваясь случаями линейной и квадратичной зависимости. Пусть требуется установить зависимость между двумя величинами x и y, например, между стоимостью потребляемого сырья и стоимостью выпущенной продукции. Произведем обследование n видов продукции и представим результаты исследования в виде таблицы:

x

x1

x2

...

xn

y

y1

y2

...

yn

Из анализа таблицы нелегко обнаружить наличие и характер зависимости между x и y. Поэтому обратимся к графику. Допустим, что точки, взятые из таблицы (опытные точки) группируются около некоторой прямой линии. Тогда можно предположить,что между x и y существует линейная зависимость`y= ax+b, где a и b - коэффициенты, подлежащие определению,`y - теоретическое значение ординаты. Проведя прямую “на глаз”, можно графически найти b и a=tg a, однако это будут весьма неточные результаты. Для нахождения a, b применяют метод наименьших квадратов.

Перепишем уравнение искомой прямой в виде ax + b -`y=0. Точки, построенные на основе опытных данных, вообще говоря, не лежат на этой прямой. Поэтому если подставить в уравнение прямой вместо x и`y заданные величины xi и yi, то окажется, что левая часть уравнения равна какой-то малой величине ei=`yi -yi; а именно: для первой точки ax1 + b - y1 = e1, для второй - ax2 + b - y2 = e2, для последней - axn + b - yn = en. Величины e1, e2,..., en, не равные нулю, называются погрешностями. Геометрически это разность между ординатой точки на прямой и ординатой опытной точки с той же абсциссой. Погрешности зависят от выбранного положения прямой, т.е. от a и b. Требуется подобрать a и b таким образом, чтобы эти погрешности были возможно меньшими по абсолютной величине. Способ наименьших квадратов состоит в том, что a и b выбираются из условия, чтобы сумма квадратов погрешностей u =  была минимальной. Если эта сумма квадратов окажется минимальной, то и сами погрешности будут в среднем малыми по абсолютной величине. Подставим в выражение для u вместо ei их значения.

u = (ax1 + b - y1) 2 + (ax2 + b - y2) 2 +... + ( axn + b - yn)2, или u = u(a,b),

где xi, yi известные величины, a и b - неизвестные, подлежащие определению. Выберем a и b так, чтобы u(a,b) имело наименьшее значение. Необходимые условия экстремума , . Имеем: = 2(ax1 + b - y1)x1 +... +2 (ax1 + b - y1)xn, = 2(ax1 + b - y1) +... + + 2 (ax1 + b - y1). Получаем систему:

.

Эта система называется нормальной системой метода наименьших квадратов. Из нее находим a и b и затем подставляем их в эмпирическую формулу `y = ax + b. Пусть теперь точки на графике располагаются вблизи некоторой параболы так, что между x и y можно предположить квадратичную зависимость:`y=ax2 + bx + c, тогда  . Тогда u =  =  . Здесь u = u(a, b, c) - функция трех независимых переменных a, b, c. Необходимые условия экстремума , ,  в этом случае примут следующий вид:

.

Получили нормальные уравнения способа наименьших квадратов для квадратичной зависимости `y = ax2 + bx + c, коэффициенты которой находим, решая систему трех линейных уравнений с тремя неизвестными.

Отыскание уравнения прямой по эмпирическим данным называется выравниванием по прямой, а отыскание уравнения параболы - выравниванием по параболе. В экономических расчетах могут встретиться также и другие функции. Довольно часто встречаются эмпирические формулы, выражающие обратно пропорциональную зависимость, графически изображаемую гиперболой. Тогда говорят о выравнивании по гиперболе и т.д.

Метод наименьших квадратов оказывается весьма эффективным при исследовании качества промышленной продукции в зависимости от определяющих его факторов на основе статистических данных текущего контроля качества продукции, в задачах моделирования потребительского спроса.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости