рефераты рефераты
Главная страница > Дипломная работа: Высшая математика для менеджеров  
Дипломная работа: Высшая математика для менеджеров
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Высшая математика для менеджеров

Пример 2.15. Решить матричным способом систему уравнений

x1 - x2 + x3 = 6,

2x1 + x2 + x3 = 3,

x1 + x2 +2x3 = 5.

Решение. Обозначим

A = , X = (x1, x2, x3)T, B = (6, 3, 5) T.

Тогда данная система уравнений запишется матричным уравнением AX=B. Поскольку D = det =5 ¹ 0, то матрица A невырождена и поэтому имеет обратную:

А-1 = 1/D .

Для получения решения X мы должны умножить вектор-столбец B слева на матрицу A: X = A-1B. В данном случае

A-1 =

и, следовательно,

= .

Выполняя действия над матрицами, получим:

x1 = 1/5(1×6+3×3-2×5) = 1/5 (6+9-10) = 1,

x2 = 1/5 (-3×6 +1×3 - 1×5) = 1/5 (- 18 + 3 + 5) = -2,

x3 = 1/5 (1×6 - 2×3 + 3×5) = 1/5 (6 -6 + 15) = 3.

Итак, С = (1, -2, 3)T.

5.5 Системы линейных уравнений общего вида

Если система (5.1) оказалась совместной, т. е. матрицы A и `A имеют один и тот же ранг, то могут представиться две возможности - a) r = n; б) r < n:

а) если r = n, то имеем n независимых уравнений с n неизвестными, причем определитель D этой системы отличен от нуля. Такая система имеет единственное решение, получаемое по формулам Крамера;

б) если r < n, то число независимых уравнений меньше числа неизвестных.

Перенесем лишние неизвестные x r+1, x r+2,..., xn, которые принято называть свободными, в правые части; наша система линейных уравнений примет вид:

a11 x1 + a12 x2 +... + a1r xr = b1 - a1,r+1 xr+1 -... - a1nxn,

a21 x1 + a22 x2 +... + a2r xr = b2 - a2,r+1 xr+1 -... - a2nxn,

   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...

ar1 x1 + ar2 x2 +... + arr xr = br - ar,r+1 xr+1 -... - arnxn.

Ее можно решить относительно x1, x2,..., xr, так как определитель этой системы (r-го порядка) отличен от нуля. Придавая свободным неизвестным произвольные числовые значения, получим по формулам Крамера соответствующие числовые значения для x1, x2,..., xr. Таким образом, при r < n имеем бесчисленное множество решений.

Система (5.1) называется однородной, если все bi = 0, т. е. она имеет вид:

a 11 x1 + a12 x2 +... + a1n xn = 0,

a21 x1 + a22 x2 +... + a2n xn = 0,                   (5.5)

...   ...   ...   ...   ...   ...

am1 x1 + am1 x2 +... + amn xn = 0.

Из теоремы Кронекера-Капелли следует, что она всегда совместна, так как добавление столбца из нулей не может повысить ранга матрицы. Это, впрочем, видно и непосредственно - система (5.5) заведомо обладает нулевым, или тривиальным, решением x1 = x2 =... = xn = 0. Пусть матрица А системы (5.5) имеет ранг r.

Если r = n, то нулевое решение будет единственным решением системы (5.5); при r < n система обладает решениями, отличными от нулевого, и для их разыскания применяют тот же прием, как и в случае произвольной системы уравнений.

Всякий ненулевой вектор - столбец X = (x1, x2,..., xn)T называется собственным вектором линейного преобразования (квадратной матрицы A), если найдется такое число l, что будет выполняться равенство

AX = lX.

Число l называется собственным значением линейного преобразования (матрицы A), соответствующим вектору X. Матрица A имеет порядок n.

В математической экономике большую роль играют так называемые продуктивные матрицы. Доказано, что матрица A является продуктивной тогда и только тогда, когда все собственные значения матрицы A по модулю меньше единицы.

Для нахождения собственных значений матрицы A перепишем равенство AX = lX в виде (A - lE)X = 0, где E- единичная матрица n-го порядка или в координатной форме:

(a11 -l)x1 + a12x2 +... + a1nxn =0,

a21x1 + (a22 -l)x2 +... + a2nxn = 0,

...  ...  ...  ...  ...  ...  ...  ...                            (5.6)

an1x1 + an2x2 +... + (ann-l)xn = 0.

Получили систему линейных однородных уравнений, которая имеет ненулевые решения тогда и только тогда, когда определитель этой системы равен нулю, т.е.

 = .

Получили уравнение n-ой степени относительно неизвестной l, которое называется характеристическим уравнением матрицы A, многочлен  называется характеристическим многочленом матрицы A, а его корни - характеристическими числами, или собственными значениями, матрицы A.

Для нахождения собственных векторов матрицы A в векторное уравнение (A - lE)X = 0 или в соответствующую систему однородных уравнений (5.6) нужно подставить найденные значения l и решать обычным образом.

Пример 2.16. Исследовать систему уравнений и решить ее, если она совместна.

x1 + x2 - 2x3 -  x4 +  x5 =1,

3x1 -  x2 + x3 + 4x4 + 3x5 =4,

x1 + 5x2 - 9x3 - 8x4 +  x5 =0.

Решение. Будем находить ранги матриц A и `A методом элементарных преобразований, приводя одновременно систему к ступенчатому виду:

~  ~ .

Очевидно, что r(A) = r(`A) = 2. Исходная система равносильна следующей, приведенной к ступенчатому виду:

x1 + x2 - 2x3 -  x4 + x5 = 1,

- 4x2 + 7x3 + 7x4    = 1.

Поскольку определитель при неизвестных x1 и x2 отличен от нуля, то их можно принять в качестве главных и переписать систему в виде:

x1 + x2 =  2x3 +  x4 - x5 + 1,

- 4x2 = - 7x3 - 7x4 + 1,

откуда x2 = 7/4 x3 + 7/4 x4 -1/4, x1 = 1/4 x3 -3/4 x4 - x5 + 5/4 - общее решение системы, имеющей бесчисленное множество решений. Придавая свободным неизвестным x3, x4, x5 конкретные числовые значения, будем получать частные решения. Например, при x3 = x4 = x5 = 0 x1= 5/4, x2 = - 1/4. Вектор C(5/4, - 1/4, 0, 0, 0) является частным решением данной системы.

Пример 2.17. Исследовать систему уравнений и найти общее решение в зависимости от значения параметра а.

2x1 -  x2 +  x3 +   x4 = 1,

x1 + 2x2 -  x3 +  4x4 = 2,

x1 + 7x2 - 4x3 + 11x4 = a.

Решение.

Данной системе соответствует матрица`А=. Имеем `А ~  ~ , следовательно, исходная система равносильна такой:

x1 + 2x2 - x3 + 4x4 = 2,

5x2 - 3x3 + 7x4 = a-2,

0 = a-5.

Отсюда видно, что система совместна только при a=5. Общее решение в этом случае имеет вид:

x2 = 3/5 + 3/5x3 - 7/5x4, x1 = 4/5 - 1/5x3 - 6/5x4.

Пример 2.18. Выяснить, будет ли линейно зависимой система векторов:

a1 = (1, 1, 4, 2),

a2 = (1, -1, -2, 4),

a3 = (0, 2, 6, -2),

a4 = (-3, -1, 3, 4),

a5 = (-1, 0, - 4, -7).

Решение. Система векторов является линейно зависимой, если найдутся такие числа x1, x2, x3, x4, x5, из которых хотя бы одно отлично от нуля (см. п. 1. разд. I), что выполняется векторное равенство:

x1 a1 + x2 a2 + x3 a3 + x4 a4 + x5 a5 = 0.

В координатной записи оно равносильно системе уравнений:

x1 + x2 -     3x4 -  x5 = 0,

x1 -  x2 + 2x3 -  x4     = 0,

4x1 - 2x2 + 6x3 +3x4 - 4x5 = 0,

2x1 + 4x2 - 2x3 + 4x4 - 7x5 = 0.

Итак, получили систему линейных однородных уравнений. Решаем ее методом исключения неизвестных:

~~ ~

~ ~ ~ .

Система приведена к ступенчатому виду, ранг матрицы равен 3, значит, однородная система уравнений имеет решения, отличные от нулевого (r < n). Определитель при неизвестных x1, x2, x4 отличен от нуля, поэтому их можно выбрать в качестве главных и переписать систему в виде:

x1 + x2 - 3x4 = x5,

-2x2 + 2x4 = -2x3 - x5,

- 3x4 = - x5.

Имеем: x4 = 1/3 x5, x2 = 5/6x5+x3, x1 = 7/6 x5 -x3.

Система имеет бесчисленное множество решений; если свободные неизвестные x3 и x5 не равны нулю одновременно, то и главные неизвестные отличны от нуля. Следовательно, векторное уравнение

x1 a1 + x2 a2 + x3 a3 + x4 a4 + x5 a5 = 0

имеет коэффициенты, не равные нулю одновременно; пусть например, x5 = 6, x3 = 1. Тогда x4=2, x2 = 6, x1=6 и мы получим соотношение

6a1 + 6a2 + a3 + 2a4 + 6a5 = 0,

т.е. данная система векторов линейно независима.

Пример 2.19. Найти собственные значения и собственные векторы матрицы

A = .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости