рефераты рефераты
Главная страница > Дипломная работа: Многомерная геометрия  
Дипломная работа: Многомерная геометрия
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Многомерная геометрия

Теорема 1. Пусть в аффинном пространстве Un даны плоскость Пk и точка В. Тогда существует единственная плоскость  размерности k, проходящая через точку В параллельно Пk. Если , то  совпадает с Пk; если точка В расположена вне Пk, то плоскости Пk и  не пересекаются.

Скрещивающиеся плоскости

Определение. Две плоскости называются скрещивающимися, если они не пересекаются и не параллельны.

Известно, что в трёхмерном пространстве U3 две прямые линии, т. е. одномерные плоскости, могут скрещиваться, тогда как прямая линия и двумерная плоскость в U3 скрещиваться не могут. С повышением размерности пространства оно становится более просторным, в результате чего появляется возможность строить в нём скрещивающиеся плоскости разных размерностей, а не только одномерные. Ниже сформулирована теорема 2, содержание которой можно рассматривать как общий приём построения скрещивающихся плоскостей. Именно, пусть в аффинном пространстве Un дана плоскость Пl (l < n). Возьмём произвольную плоскость Пk так, чтобы Пk и Пl не были параллельны и пересекались; плоскость, по которой они пересекаются, обозначим через Пm. Пусть Пr - плоскость наименьшей размерности, содержащая Пk и Пl. Мы знаем, что r = k + l – m.

Теорема 2. Если , то всякая k-мерная плоскость, которая параллельна Пk и не лежит в Пr, скрещивается с Пl.

Следствие. Если целые числа k, l, m, n удовлетворяют неравенствам

, , , то в Un найдутся скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, пересечение которых  имеет размерность m.

Доказательство теоремы 2. Так как , то плоскость Пr не исчерпывает собой всего пространства Un. Это позволяет взять (с большим произволом) точку С, не лежащую в Пr. Обозначим через  плоскость размерности k, проходящую через точку С, параллельно Пk. Ясно, что  не содержится в Пr и что, выбирая по-разному точку С, мы можем получить любую k-мерную плоскость, удовлетворяющую условию теоремы. (См. рис. 14, на котором k = l = 2, r = 2, n = 4, и трёхмерные плоскости условно изображены в виде параллелепипеда).

 

Рис. 20

Докажем, что плоскости Пl и  скрещиваются. Заметим, что плоскость  не параллельна Пl, так как в противном случае или , или , что противоречит условию расположения плоскостей Пk и Пl.

Теперь докажем, что  и Пl не пересекаются. Проведём через точку С вспомогательную r-мерную плоскость , параллельную Пr. Тогда  и поэтому Пk не может пересечь Пl ибо в противном случае точка их пересечения  принадлежала бы параллельным плоскостям Пr и . Следовательно, скрещивается с Пl. Теорема 2 доказана.

Пусть в n-мерном аффинном пространстве Un даны скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, причём

, .

Теорема 3. Существует единственная плоскость Пr+1 размерности , содержащая плоскости Пk и Пl.

Доказательство. Возьмём произвольную точку  и зафиксируем произвольную точку ; обозначим через  линейную оболочку вектора  (рис. 16). Допустим, что существует какая-то плоскость , содержащая Пk и Пl; пусть  - её направляющее подпространство. Очевидно, что  должно содержать Lk, Ll и , а следовательно, и сумму этих подпространств. Обозначим эту сумму через Lr+1:

Обратно, если  - любое подпространство, включающее Lr+1, то , проходящая через точку А в направлении , будет содержать Пk и Пl. В самом деле, так как  и, то; так как , то , так как  и , то .


 

Рис. 21

Получим среди всех плоскостей  искомую плоскость Пr+1 минимальной размерности r + 1 в том единственном случае, когда в качестве  берётся Lr+1. Подсчитаем r + 1. С этой целью рассмотрим  и обозначим размерность  через р. По теореме 3 (в n-мерном пространстве L имеются подпространства Lk и Ll, размерности которых соответственно равны k и l. Если их пересечение имеет размерность m, то размерность их суммы Lk + Ll равна r = k + l – m) имеем р = k + l – m.

Покажем, что  есть прямая сумма, поэтому размерность Lr+1 равна р + 1, то есть (r + 1) = (k + l – m) +1.

Для этого достаточно показать, что вектор  не принадлежит пространству . Предположим противное. Пусть . Тогда по определению суммы подпространств существуют векторы х и у такие, что, , . (v) По первой аксиоме аффинного пространства найдётся точка С такая, что , причём . По второй аксиоме аффинного пространства . (vv)

Учитывая (v), (vv), находим, что , так что . Получается, что плоскости Пk и Пl имеют общую точку С, но это невозможно, поскольку плоскости Пk и Пl скрещиваются. Теорема 3 доказана.

Замечание. Рисунок 20 лишь частично иллюстрирует теорему 3. Например, если размерности Пk и Пl больше m и различны между собой, , то, как,

Проведённые выше рассуждения показывают, что плоскости Пk и Пl, о которых идёт речь в теореме 3, не содержатся ни в какой плоскости меньшей размерности, чем r + 1.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

рефераты
Новости