рефераты рефераты
Главная страница > Курсовая работа: Діафантові рівняння  
Курсовая работа: Діафантові рівняння
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Діафантові рівняння

Якщо ж  , то 𝑥 довільне, 𝑎 𝑦. І так, при  ми маємо, крім тривіального розв'язку , де 𝛼 – будь яке натуральне число або нуль, лише ще один розв'язок:

При  . Очевидно, що непарних значеннях z дане рівняння не має розв’язків , при парних значеннях z рівняння зводиться до вигляду:

Отже, рівняння має тривіальний розв'язок  де 𝛼 – будь-яке натуральне число, і, крім того, ще має тільки три розв’язки:

Приклад 8.

Розв’язати в натуральних числах рівняння

 

Розв'язок.

Перепишемо дане рівняння у вигляді:

або

Оскільки дільниками числа 7 є лише числа  то шукані числа 𝑥 та 𝑦 треба шукати серед розв’язків наступних чотирьох систем:

Перша система має єдиний розв'язок в натуральних числах  третя система має також єдиний розв'язок в натуральних числах  Друга та четверта системи не мають розв’язків в натуральних числах.Отже, дане рівняння має рівно два розв’язки в натуральних числах: .

Приклад 9.

Розв’язати в цілих числах рівняння:

 

Розв'язок.

Ні одне із невідомих не може бути цілим від’ємним числом, так як рівності

неможливі при натуральних 𝑥, 𝑦, 𝑚, 𝑛.

Легко перевірити, що . Отже, 𝑥, 𝑦 – натуральні. Із умови випливає:

або

або

Число  – парне, якщо

Якщо , то , а тому із умови маємо

тобто,

Таким чином,  - розв'язок даного рівняння.

Якщо ж  повинно містити парну кількість доданків, а тому 𝑥 – парне число; нехай . Тоді

або ,

або .

Якщо 𝑧 – непарне число, то  - непарне число, що можливо лише при  тобто .

Тоді з умови маємо

тому  - другий розв'язок даного рівняння.

Якщо ж 𝑧 – парне число, тобто , то , а тому дане рівняння перепишемо у вигляді:


або ;

тому

останнє рівняння не має розв’язків, так як  ділиться на 5, а  не ділиться на 5.

Відповідь: (1, 1), (2, 3).

Приклад 10.

Розв’язати в натуральних числах рівняння:

 

Розв'язок.

Перепишемо рівняння у такому вигляді:

  (1)

Якщо  то , а тому , тобто ; відповідно, при  має місце нерівність

  (2)

Якщо , то , а тому ; значить, при  має місце нерівність

  (3)

Об’єднуючи нерівності (2) і(3), отримуємо, що при  ліва частина рівняння (1) додатна і тому відмінна від нуля.

Отже, при існуванні цілих додатних чисел даного рівняння 𝑥 має дорівнювати 1 або 2, а 𝑦 = 1. Підстановкою впевнюємось, що лише 𝑥 = 2, 𝑦 = 1 є розв’язком даного рівняння в натуральних числах.

Відповідь: (2, 1).

Приклад 11.

Розв’язати в цілих додатних числах систему рівнянь:

 

Розв'язок.

Додавши два рівняння системи, отримаємо

Звідки

                                (1)

Віднімаючи друге рівняння системи від першого, отримаємо

звідки

 (2)

Помноживши дві частини рівняння (2) на 2 і віднімаючи потім нове рівняння від (1), отримаємо

 (3)

Таким чином, із (2) та (3) випливає:

.

Оскільки , можливі лише два випадки:

а)

Відповідь: (4, 3, 1), (8, 1, 2).

Приклад 12.

Показати, що система рівнянь

 

має єдиний розв'язок

Розв'язок.

Так, як , то перше рівняння системи можна переписати у вигляді .

Оскільки (в означенням) , поділивши дві частини рівняння  на добуток , отримаємо рівносильне йому рівняння

Оскільки


є цілим числом, то і сума  повинна бути цілим числом. Останнє можливо лише в п’яти випадках:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости