рефераты рефераты
Главная страница > Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов  
Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

Вы*бор подходящего источника диффузии зависит от метода проведения диффузии. К примеру,  любое соединение бора, также как и элементарный бор, может служить источником диффузии бора в зависимости от выбранного метода. Однако оптимальные результаты можно получить только при комплексном решении проблемы, включающем выбор источника, метода диффузии и соответствующего оборудования. Поэтому в связи с созданием или усовершенствованием источника диффузии целесообразно рассмотреть современные методы диффузии и основные рекомендуемые для них источники.

В настоящее время можно выделить два основных направления, в рамках которых группируются методы получения однородной и регулируемой  поверхностной концентрации с хорошей воспроизводимостью результатов:

-  нанесение диффузанта на пластины кремния в ходе диффузии; при этом разрабатываются методы регулирования количества соединения примеси в атмосфере, окружающей кремниевые пластины во время диффузии;

-  нанесение диффузанта на пластины кремния до диффузии; здесь основное внимание уделяется методам регулирования количества соединения примеси, наносимой на пластины перед диффузией, а также путям повышения степени однородности нанесенного слоя.

Первое направление отличается большим разнообразием путей транспортировки диффузанта к пластинам кремния, а также сложностью технологической оснастки и вспомогательных процессов. Наибольшего применения в электронной промышленности при производстве полупроводниковых приборов и микросхем получил метод открытой трубы в потоке газа-носителя..

Второе направление – нанесение диффузантов на полупроводниковые пластины перед высокотемпературной термообработкой. Оно требует несложного технологического оборудования. Диффузия проводится в открытой трубе, чаще всего на воздухе.

1.2.1. Диффузия в запаянной и откачанной кварцевой ампуле

При проведении диффузии в замкнутом объеме пластины кремния помещаются вместе с некоторым количеством примеси в ампулу из кварца, которая откачивается до 10−4 – 10−5 мм рт. ст. и отпаивается [16]. В некоторых случаях ампула заполняется перед отпайкой чистым инертным газом. Затем ампулу помещают в камерную силитовую печь, нагретую до температуры, при которой проводится диффузия. Вследствие возгонки легирующего элемента в ампуле создается давление паров примеси. Атомы легирующей примеси адсорбируются на поверхности кремниевой пластины и диффундируют в поверхностные слои полупроводника. При таком методе практически всегда соблюдаются условия, при которых количество атомов примеси в паровой фазе много больше количества атомов примеси, диффундирующих в кремний. Поверхностную концентрацию примеси можно менять в широких пределах, меняя концентрацию примеси в газовой фазе, т.е. давлением паров диффузанта, температуру диффузионного процесса и время диффузии.

В идеальном случае равновесная концентрация пропорциональна давлению пара диффузанта, и контроль давления пара является удобным средством управления поверхностной концентрацией примеси. Необходимо заметить, что равновесная поверхностная концентрация устанавливается не сразу, а в течение некоторого времени, иногда достаточно большого. Если равновесие на поверхности достигается за время, меньшее, чем время диффузии, то поверхностную концентрацию можно считать постоянной. При проведении процесса диффузии в закрытой ампуле такое условие в большинстве случаев соблюдается, поэтому распределение примеси описывается дополнительной функцией интеграла ошибок.

Иногда при диффузии в откачанной ампуле на поверхности кремниевой пластины может образовываться слой двуокиси кремния, который будет препятствовать диффузии атомов примеси в кремний.

При определенных условиях, например, в случае больших парциальных давлений, концентрация примеси может быть такой, что на поверхности пластины будет образовываться слой вещества в жидкой фазе, который может также препятствовать диффузии атомов примеси в полупроводник.

                                    а)                                     б)

Рис. 1.5. Схема установок для проведения процессов диффузии примесей в кремний в закрытом объеме: а – диффузия бора, б – диффузия фосфора.                       1 – силитовая высокотемпературная печь; 2 – кварцевая запаянная ампула; 3 – пластины кремния; 4 – лодочка с диффузантом; 5 – низкотемпературная печь.

На рис. 1.5 приведены схемы установки для проведения диффузии в кремний в закрытом объеме. Если в качестве диффузанта используют элемент, обладающий очень высоким давлением пара при температуре диффузии (например, фосфор), то используют замкнутую систему, представляющую собой откачанную ампулу с отростком. В отростке находится источник примеси, температура которого может регулироваться независимо от температуры пластин кремния (рис 1.5, б). Такая же ампула с отростком может быть использована в случае применения диффузанта с низким парциальным давлением при температуре диффузии, когда необходимо в широких пределах регулировать поверхностную концентрацию примеси на пластинах кремния.

При проведении диффузии в закрытом объеме следует учитывать зависимость давления паров диффузанта от температуры. Для некоторых примесей (фосфор, мышьяк, сурьма) при высокой температуре давление паров настолько сильно увеличивается, что ампула может разорваться.

Поверхностная концентрация примеси, полученная в системе запаянной ампулы, соответствует предельной растворимости примеси при температуре диффузии; поскольку источник бесконечен, его поверхность должна быть намного больше поверхности системы в состоянии равновесия. В этом случае, например, используется гранулированный источник примеси. Продолжительность диффузии также должна быть значительной, чтобы и поверхность подложки, и стенки ампулы находились в равновесии. Поэтому такая система больше подходит для формирования глубоких слоев, поверхностная концентрация которых не ниже максимальной растворимости примеси при температуре диффузии в кремнии.

Хотя этот метод и позволяет получить достаточно высокие значения поверхностной концентрации, тем не менее для получения заранее заданной величины, а также невысоких значений поверхностной концентрации он ненадежен, в частности, из-за взаимодействия диффузанта с материалом ампулы [9].

При диффузии в ампулах пригодны газообразные, жидкие и твердые источники примеси, например BF3 и B2O3, элементарный красный фосфор, P2O5, PCl3 или PH3, а также измельченный в порошок кремний или его диоксид, содержащие достаточное количество примеси [3].

Недостатки метода диффузии в замкнутом объеме заключаются в следующем:

1)   невозможность раздельного управления поверхностной концентрацией и температурой диффузии;

2)  сравнительно низкая производительность и большой расход дорогостоящего плавленного кварца, так как после каждого процесса диффузии ампула разбивается для извлечения из нее пластин кремния.

Диффузия в запаянных ампулах не нашла широкого применения из-за низкой производительности и недостаточной воспроизводительности результатов.

1.2.2. Метод открытой трубы

 Метод диффузии в открытой трубе лишен указанных выше недостатков метода диффузии в запаянной ампуле. В этом методе в высокотемпературную печь помещается кварцевая труба с пластинами кремния, выходной конец которой открыт в атмосферу. Через входной конец трубы подается газ (необязательно инертный), в который из первичного источника диффузии поступают соединения примеси. Источник примеси может быть твердым, жидким или газообразным. В первых двух случаях необходимое давление паров получают, подогревая первичный источник. Наиболее широко используются такие источники диффузии, как H3BO3, BBr3, BCl3, B2H6, P2O5, (NH4)3PO4, POCl3, PBr3, PH3 [3].

Рассмотрим схему установки для проведения диффузии методом открытой трубы. Схема современной  установки представлена на рис. 1.6.

Рис. 1.6. Схема рабочей камеры диффузионной печи.

Собственно камера представляет собой кварцевую (или керамическую)  трубу 1, снабженную резистивными нагревателями 2 (3 секции с независимым регулированием температуры). Крайние секции поддерживают малый градиент температуры, обеспечивающий средней секции рабочую температуру до 1250°С с высокой точностью (до ± 0,25°С). Именно в этой части камеры на кварцевом (или керамическом) держателе 3 располагаются обрабатываемые пластины 4, имеющие на рабочей поверхности оксидную маску. При выполнении загонки примеси или одностадийного процесса диффузии в камеру из внешнего источника непрерывно подается диффузант, представляющий смесь легирующей примеси (акцептор бор или донор фосфор) с транспортирующим газом (аргон). Такая установка используется при диффузии из жидких и газообразных источников.

В случае применения жидкого источника если газ насыщен примесью, то его концентрация в кремнии зависит только от температуры жидкого источника и рабочей температуры диффузии, но не от потока. Если в качестве жидких источников применяются галогены, то это способствует уменьшению загрязнения реактора ионами металлов и формированию бездефектных областей, содержащих активные элементы. Однако при этом возможно локальное растворение полупроводника и появление матовости на поверхности кремниевых пластин [3].

Однородность поверхностной концентрации примеси в кремнии при постоянной температуре диффузии определяется распределением давления паров образующегося окисла примеси в рабочей зоне диффузионной печи.

При работе с газообразным источником диффузанта используют баллон, содержащий смесь PH3 (или B2H6) и инертного газа, например аргона. Газом-носителем может служить азот в смеси с кислородом.

При диффузии методом открытой трубы с использованием твердого источника тигель с источником в виде порошка находится в реакторе со стороны подачи газа-носителя перед лодочкой с пластинами кремния (или даже под ней). Однородность легирования в сильной степени зависит от давления паров источника, поэтому для его регулирования температура последнего устанавливается ниже температуры диффузии путем использования печи с двумя нагревательными камерами (см. рис. 1.3). Состав несущего газа должен быть таким, чтобы не происходило окисления пластин полупроводника. Пленка окиси, если она образуется, может препятствовать проникновению примеси внутрь образцов кремния.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

рефераты
Новости