рефераты рефераты
Главная страница > Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов  
Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

По этим данным строится ВАХ фотопреобразователя (рис. 4.4):

М

 

Рис. 4.4. ВАХ n+-p СЭ с текстурированной поверхностью.

Из графика на рис. 4.2 определяем, что Vm=0,028 B, Im=0,3 mA. Площадь поверхности СЭ составила S=16 мм2, соответственно Pист=P0·S= 70 мВт/см2· 0,16 см2 = 11,2 мВт.

Фактор заполнения F считаем по формуле (4.4):

Коэффициент полезного действия солнечного элемента определяем по формуле (4.5):

Такой низкий КПД  полученного солнечного элемента в большой степени определяется тем, что не удалось создать хорошего омического контакта. Кроме того, при диффузии с применением поверхностного источника на основе спиртового раствора ортофосфорной кислоты при нанесении раствора на пластину на тыльной стороне пластины образуются затеки. При проведении процесса диффузии на тыльной стороне пластины образуется p – n переход. Для снятия с тыльной стороны подложек слоя кремния с находящимся в нем в результате диффузии фосфором, приводящим к увеличению последовательного сопротивления СЭ на тыльном контакте необходимо применять, например, плазмохимическую обработку. Так как такой операции не было проведено, то можно сделать заключение, что образование на тыльной стороне p – n перехода существенно ухудшает электрофизические параметры СЭ.


ВЫВОДЫ

Одним из наиболее перспективных методов диффузионного легирования кремния для производства кремниевых солнечных элементов является диффузия из поверхностного источника. Особенностью этого метода является то, что создание слоя примесносиликатного стекла, из которого будет идти диффузия примеси в кремний, осуществляется до проведения процесса диффузии. Метод прост, не требует сложного оборудования, возможно проведение диффузионного отжига в атмосфере воздуха. Всвязи с этим, применение метода диффузии из поверхностного источника может удешевить технологию производства кремниевых СЭ.

 В данном дипломном проекте рассматривалось несколько поверхностных источников диффузии, также был рассмотрен твердый планарный источник.  Из поверхностных источников для диффузии бора и фосфора были достаточно полно изучены источники на основе спиртовых растворов борной и ортофосфорной кислот. Предложена технология проведения диффузии с использованием таких источников, которая позволяет надежно получать p – n переход в полупроводниковой пластине кремния.

Также были проведены опыты по наиболее перспективному из поверхностных источников – легированному окислу. Именно метод диффузии из легированного окисла представляет повышенный интерес в связи с промышленным применением в технологии производства кремниевых солнечных элементов. Большое внимание необходимо уделять технологии приготовления пленкообразующего раствора, соотношение компонентов смеси.

При использовании разработанного источника на основе ортофосфорной кислоты создан СЭ на кремнии с текстурированной поверхностью, измерены его электрофизические характеристики.


5. ОХРАНА ТРУДА

Закон Украины "Об охране труда" (новая редакция 2002 г.)  определяет основные положения по реализации конституционного права граждан на охрану их жизни и здоровья в процессе трудовой деятельности, регулированием отношений между работником и владельцем предприятия и устанавливает единый  порядок организации охраны труда Украины.

Охрана труда – это система правовых, социально-экономических, организационно-технических, санитарно-гигиенических и  лечебно-профилактических мер и средств, направленных на сохранение здоровья и трудоспособности человека в процессе    труда.

5.1. Анализ условий труда

Во время выполнения экспериментальной части дипломного проекта требуется присутствие в лаборатории технологии полупроводниковых приборов. В лаборатории, где происходит изготовление солнечных элементов  согласно определенному технологическому процессу, существует несколько опасных и вредных  групп  факторов, которые  согласно ГОСТ 12.0.003-74, можно разделить на:

-   физические;

-   химические;

-   биологические;

-   психологические;

В рабочем помещении имеют место следующие факторы:

1. Группа физических факторов: а) недостаток естественного света;                            б) электроопасность; в)  пожароопасность.

2. Группа химически опасных факторов: а) химические жидкости, например, кислоты (HCI, HNO3, HF), щелочи (KOH, NaOH) и другие вещества; б) горючие и легковоспламеняющиеся вещества (спирты, ацетон, бензин); в) наличие оловянно-свинцовых припоев в разогретом состоянии.

3. Психологические факторы: а) нервно-психологические перегрузки; б) монотонная работа; в)  работа, требующая повышенного внимания.

Недостаток освещения приводит к перенапряжению и быстрому утомлению органов зрения, что влечет за собой производственные травмы, снижает общую работоспособность организма, снижается производительность труда, увеличивается количество брака, способствует потере зрения.

Воздействие электрического тока может вызвать тяжелые последствия для организма человека, вплоть до смертельных случаев.

Химические вещества, используемые в технологических процессах, представляют опасность для здоровья, вызывают ожоги, головную боль, тошноту, различного рода отравления, сердцебиения. Например, специфика дипломного проекта предусматривает частое использование плавиковой и азотной кислот. Плавиковая кислота сильно ядовита, пары вызывают раздражение кожи, глаз и дыхательных путей. Азотная кислота при непосредственном контакте с кожей вызывает кислотный ожог, при вдыхании паров слабое отравление выражается в головной боли, головокружении, шума в ушах, сонливости.

Не правильное применение легковоспламеняющихся веществ может привести к пожару. Пожар опасен как вследствие возможности получения термического ожога, так и вдыхание вредных продуктов горения.

Нервно-психологические перегрузки, монотонная работа могут привести к депрессии, перевозбуждения мозга и как следствие – к снижению производительности труда.

Выявленные опасные и вредные факторы вызывают необходимость технических, технологических, организационных и противопожарных мероприятий.

Технические мероприятия: оснащение технического и вспомогательного оборудования ограждениями, предупредительными приспособлениями, сигнальными приборами, постоянный контроль за состоянием узлов и механизмов, органов управления, своевременный ремонт и испытания, применение спецодежды.

Организационные мероприятия: улучшение работы по обучению и инструктажу персонала, усиление надзора по охране труда, правил и норм безопасности.

Противопожарные мероприятия: блокировки, сигнализация, герметизация электроустановок.

5.2. Электробезопасность

Согласно ПУЭ и ГОСТ 12.1.013-78 помещение лаборатории технологии полупроводниковых приборов относится к первому классу – без повышенной опасности. Основным оборудованием, используемым в экспериментальной части дипломного проекта является электропечь СУОЛ-044 12-М2-У42. Технические характеристики   электропечи:  напряжение  220 В, мощность     2,5 кВт. Согласно ГОСТ  12.2.007.0-75.ССБТ. данная электропечь относится к  I классу.

Согласно ГОСТ 12.1.019-79 электробезопасность в рабочем помещении обеспечивается: конструкцией установок и технически-организационными мероприятиями.

Должны применяться следующие технические способы и средства: защитное заземление, малое напряжение, выравнивание потенциалов.

5.3. Расчет защитного заземления

Согласно  ГОСТ   12.1.030-81  защитное  заземление  должно  обеспечить   защиту людей   от  поражения электрическим током при прикосновении  к   металлическим нетоковедущим частям, которые могут оказаться под напряжением.

Заземлением называется преднамеренное соединение электроустановок с заземляющим устройством.

Заземлителем называется проводник, находящийся в соприкосновении с землей или ее эквивалентом.

Заземляющим проводником называется проводник, соединяющий заземленные части с заземлителем.

Совокупность соединяющих проводников и заземлителей называется заземляющим устройством. Для установок мощностью не более 100 кВт сопротивление заземляющего устройства не должно превышать 10 Ом, для установок мощностью более 100 кВт – 4 Ом.

Рассчитаем сопротивление одиночного заземлителя (электрода). Для вертикального электрода из круглой арматуры сопротивление растекания тока одиночного заземлителя рассчитывается по формуле :

,                                                        (5.1)

где      r - удельное сопротивление грунта, Ом × м;

l - длина электрода, м;

t- заглубление электрода,  м;

d - диаметр одиночного вертикального заземлителя, м.

Заглубление электрода t равно:

,                                                               (5.2)

где h - расстояние от вершины электрода до поверхности земли, м.

При проектировании заземляющих устройств учитывается коэффициент сезонности (f), который показывает изменение удельного сопротивления грунта в зависимости от погодных и климатических условий. С учетом длины электрода и климатической зоны III f =1,2

;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

рефераты
Новости