рефераты рефераты
Главная страница > Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов  
Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

NiSO4×7H2O – 45,4 г/л;

Na2SO4×10H2O – 60 г/л;

Н3ВО4 – 30 г/л.

Схема установки для электрохимического осаждения никеля приведена на рис. 4.1.

Рис. 4.1. Схема установки для электрохимического осаждения никеля: 1 – ванна; 2 – электролит; 3 – пластина кремния; 4 – пластинка никеля; 5 – амперметр; 6 – электронагреватель; 7 – блок питания.

В качестве анода электролитической ванны использовалась никелевая фольга толщиной порядка 200 мкм. Катодом служила сама кремниевая структура. В качестве источника постоянного тока использовался блок питания Б5-47/1, работающий в режиме стабилизации тока. Осаждение производилось при плотности тока 2 - 5 мА/см2 и температуре электролита 35°С в течение 2 – 3 мин.

После нанесения слоя никеля структуры промывались в дистиллированной воде и производилось механическое удаление защитного слоя лака ХСЛ. Для удаления остатков лака применялось кипячение пластин в толуоле.

4.3. Измерение основных параметров на структурах солнечных элементов

Наиболее важными характеристиками солнечных элементов являются световая и прямая темновая вольт-амперные характеристики (ВАХ) и спектральная чувствительность.

Основной параметр СЭ – световая нагрузочная ВАХ – позволяет определить генерируемую электрическую мощность по произведению Im∙Um (максимальные рабочие ток и напряжение), оценить полноту использования потенциала запрещенной зоны по напряжению холостого хода, получить представление об уровне оптических и фотоэлектрических потерь по току короткого замыкания и коэффициенту заполнения ВАХ; рассчитать коэффициент полезного действия преобразования солнечной энергии в электрическую по отношению мощности, генерируемой СЭ, к мощности падающего солнечного излучения, которую можно измерить с помощью отградуированного эталонного солнечного элемента.

ВАХ идеальных фотоэлектрических преобразователей (ФЭП) может быть описана выражением:

                                                                                (4.1)

где I и V – ток во внешней цепи и напряжение на сопротивлении нагрузки; Iф – фототок, генерируемый в полупроводнике солнечным излучением; Io – ток насыщения ФЭП, определяющийся механизмами генерационно-рекомбинационных явлений; А ≥ 1 – фактор качества выпрямляющего перехода; е – заряд электрона; k – постоянная Больцмана; Т – абсолютная температура.

В выражении (4.1) не учитываются некоторые важные характеристики реальных ФЭП, которые могут в значительной степени влиять на эффективность фотоэлектрического преобразования. К числу таких характеристик можно отнести последовательное сопротивление ФЭП Rп, определяющееся сопротивлением объема полупроводниковой базы, контактными сопротивлениями верхнего и нижнего токосъемных электродов и распределенным сопротивлением верхней (освещаемой) области перехода, а также шунтирующее коллекторный переход сопротивление Rш, на величину которого существенно влияют как технологические факторы, так и параметры  используемого полупроводникового материала. Эквивалентная схема реального полупроводникового ФЭП с учетом названных паразитных сопротивлений и сопротивления нагрузки показана на рис. 4.2. Нетрудно показать, что в последнем случае ВАХ может быть описана соотношением [18]:

Rп

 
                         (4.2)

V

 

 

 

I

 

 

 

Рис. 4.2. Эквивалентная схема фотопреобразователя.

Рассмотрим более подробно физические процессы, определяющие эффективность преобразования энергии солнечного излучения в электрическую энергию. На рис. 4.3 показана типичная ВАХ полупроводникового ФЭП, описываемая выражением 4.2.

I,mA

 

Vm

 

Vхх

 

V,В

 

Im

 

Iкз

 

M

 

Рис.4.3. Вольт-амперная характеристика солнечного фотопреобразователя.

Можно видеть, что по мере увеличения сопротивления нагрузки напряжение V фотопреобразователя монотонно увеличивается и при Rн → ∞ достигает определенного значения Vхх, величина которого зависит как от интенсивности солнечного излучения, так и от характеристик самого ФЭП. С другой стороны, ток I во внешней цепи при увеличении Rн  вначале изменяется слабо, оставаясь примерно равным току короткого замыкания Iкз, а затем достаточно резко уменьшается при дальнейшем увеличении Rн . На ВАХ существует единственная точка M, в которой мощность Pm, отдаваемая ФЭП во внешнюю цепь, оказывается максимальной и равной площади следующего прямоугольника:

                                                   .                                                   (4.3)

 Для характеристики внутренних потерь ФЭП обычно используют так называемый коэффициент заполнения ВАХ F, равный отношению Pm к произведению тока короткого замыкания ФЭП на напряжение холостого хода:

                                                                                                        (4.4) 

С учетом (4.4) КПД  η полупроводникового фотопреобразователя может быть определен как отношение максимальной мощности, отдаваемой ФЭП во внешнюю нагрузку, к суммарной мощности солнечного излучения Pи, падающей на фотоприемную поверхность:

                                                                                               (4.5)

Определим коэффициент полезного действия  n+-p СЭ с текстурированной поверхностью (см. 4.1). Для измерения мощности падающего на СЭ солнечного излучения использовался измеритель мощность ИМО 3. В момент измерений мощность падающего излучения составляла P0 ~ 70 мВт/см2.

При измерении световой нагрузочной ВАХ солнечного элемента были получены следующие значения напряжения и тока (табл. 4.1):

Таблица 4.1.

Результаты измерения световой нагрузочной ВАХ

V,B 0 0,008 0,017 0,025 0,031 0,034 0,035 0,036 0,038
I,mA 0,39 0,38 0,35 0,32 0,26 0,17 0,13 0,09 0

 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

рефераты
Новости