рефераты рефераты
Главная страница > Учебное пособие: Основы радиосвязи  
Учебное пособие: Основы радиосвязи
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Основы радиосвязи


2.17 Условия существования режима бегущих волн

Как было отмечено в разделе 2.13, для наиболее эффективной передачи энергии электромагнитных колебаний по линии от источника к нагрузке следует устанавливать режим бегущих волн. Получим условие его существования.

В конце линии при  сопротивление нагрузки

где

Учитывая (2.27) и (2.28), запишем

или, поделив числитель и знаменатель на  и принимая во внимание выражение (2.36), получим

отсюда

(2.40)

В режиме бегущих волн коэффициент отражения напряжения . Таким образом, получаем следующие условия для существования режима бегущих волн: (2.41) или где - волновое сопротивление линии,

Для того, чтобы в линии передачи существовал режим бегущих волн, требуется, чтобы нагрузка была чисто активная и сопротивление нагрузки равнялось волновому сопротивлению линии.

Волновое сопротивление зависит от погонных параметров линии , которые определяются размерами линии и её заполнением. В большинстве радиотехнических устройств применяются коаксиальные и микрополосковые линии со стандартным волновым сопротивлением Ом или Ом. Такие значения сначала были выбраны для коаксиальных линий из условия минимума потерь в линии и максимума передаваемой мощности (см. Приложение 6). Поскольку в микроэлектронных радиосистемах коаксиальные линии сопрягаются с микрополосковыми, такой же стандарт был выбран и для микрополосковых линий.

В заключение отметим, при таком условии амплитуды колебаний напряжения и тока не зависят от того, в каком сечении в линии они определены. Изменения амплитуд объясняется сложением колебаний, распространяющихся вдоль оси Х и обратно, мгновенная фаза которых зависит от координаты. Из-за этой зависимости возникают пучности, где разница фаз падающей и отраженной волн равна 0 и узлы, где разность фаз составляет  радиан. Для того, чтобы устранить эту зависимость, нужно выполнить условие или

где -длина волны в линии.

Таким образом, линии передачи и любые электронные каскады радиосистем, размеры которых значительно меньше длины волны, можем считать устройствами с сосредоточенными параметрами. Зависимость физических величин и параметров от координат в них не проявляется.


3. Излучение и распространение радиоволн

Электромагнитные волны излучаются в пространстве передающими антеннами, на которые поступают колебания по фидеру от источника. В антеннах происходит преобразования типа колебаний, существующего в фидере, в ТЕМ – волны, распространяющиеся в свободном пространстве.

3.1 Диполь Герца

Электромагнитное поле создается генератором, от которого колебания E(t) и H(t) по фидерному тракту поступают в излучатель антенны – рис. 3.1.


Антенна – это устройство, которое служит для излучения и приема электромагнитных колебаний. Существует огромное количество типов антенн. Все они взаимны, т.е. одновременно могут излучать и принимать. Изучение антенн начнем с самых простых.

Простейшим излучателем является диполь Герца, представляющий собой металлический стержень, в разрыв которого поступают колебания от генератора Iг(t) , а на концах имеются шары.


При периодическом изменении тока генератора в диполе протекает переменный ток плотностью j(t) , а на шарах накапливается переменный заряд q(t). Диполь Герца излучает электромагнитные колебания по следующим причинам:

в соответствии с 1 – м и 3 – м уравнениями Максвелла под действием переменных j(t) и ρ(t) в пространстве около диполя возникают переменные магнитное H(t) и электрическое E(t) поля;

в согласии с 1-м и 2-м уравнениями Максвелла вокруг силовых линий  возникает магнитное поле , а вокруг силовых линий  возникает поле ; далее процесс повторяется, в результате чего образуется электромагнитная волна, распространяющаяся в пространстве.

Для того, чтобы определить характеристики излучения диполя Герца, решим уравнения Максвелла при следующих допущениях:

плотность тока проводимости вибратора jпр(t) одинакова в любой точке сечения стержня, т.е. ток равномерно распределен по сечению площадью S, отсюда

;

ток генератора изменяется во времени по гармоническому закону


,

где  - амплитуда, ω – циклическая частота колебаний.

Уравнения Максвелла целесообразно решать в сферической системе координат, где координатами являются: r - расстояние от начала координат до точки наблюдения, θ - угол места, φ - азимутальный угол – рис.3.3


Векторы  и  в сферической системе могут быть записаны следующим образом:

;

;

где , ,  - векторы единичной длины, направленые по касательной к координатным линиям; Er, Eθ, Eφ, Hr, Hθ, Hφ – проекции векторов  и  на направления r, θ, φ.

Координатная линия – это линия пересечения двух координатных поверхностей. Координатные поверхности – поверхности одинаковых значений r, θ, φ. Координатной поверхностью r = const является сфера, θ = const - поверхность конуса, φ = const - плоскость.

Координатная линия r - прямая, образованная пересечениями конической поверхности θ = const и плоскости φ = const , координатная линия θ - окружность, образованная пересечением сферы r = const и плоскости φ = const , линия φ - окружность, образованная пересечением сферы r = const и поверхности косинуса θ = const . На рис. 3.3 показаны направления векторов , и .

При расположении диполя Герца, показанном на рис. 3.3, составляющие поля не зависят от азимутального угла φ . Решение уравнений Максвелла при известной длине диполя l , амплитуде тока генератора Im, параметрах пространства ε и μ, при условии отсутствия потерь энергии имеет следующий вид [1]:

,

,(3.1)

,

где

 - волновое сопротивление пространства,

- фазовый множитель.

Как видим, из шести проекций векторов  и  в решении оказалось только три.

3.2 Ближняя и дальняя зоны излучателя

Анализ полученных соотношений для проекций векторов показывает, что характер электромагнитного поля антенны существенно зависит от сомножителя . Произведение βr можно записать в виде

.

Ближняя зона

В точках пространства, расположенных вблизи излучателя, там, где выполняется соотношение

можно считать, что . Кроме того, можно еще более упростить выражение для комплексных амплитуд ,  и , пренебрегая в скобках слагаемыми высших порядков малости. Итак, для  комплексные амплитуды

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

рефераты
Новости