рефераты рефераты
Главная страница > Учебное пособие: Основы радиосвязи  
Учебное пособие: Основы радиосвязи
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Основы радиосвязи

(1.20)

или, с учётом (1.19)

(1.21)

где f-частота колебаний поля,

магнитная проницаемость, g-электропроводность проводника.

Сопротивление проводника переменному ноку.

В результате того, что напряжённость электрического поля сосредоточена вблизи поверхности проводника, переменный электрический ток протекает в относительно узком приповерхностном слое, что следует из закона Ома: . В результате, сопротивление переменному току оказывается выше, чем постоянному.

Получим выражение для сопротивления отрезка проводника длинной l, шириной d и бесконечной глубиной (координата y меняется от 0 до ∞). В соответствии с (1.18), плотность тока

Комплексная амплитуда тока, проходящего через поперечное сечение проводника шириной α и бесконечной глубиной

или

Комплексная амплитуда напряжения на проводнике длиной

,

Отсюда сопротивление проводника

Как видим, сопротивление Z имеет действительную часть

и мнимую часть индуктивного характера

Учитывая (1.20), получим, что активное сопротивление проводника переменному току

(1.22)

равно сопротивлению проводника постоянному току, если высота проводника h=hск.

Как следует из (1.22), при изготовлении проводников для переменного тока толщину металлизации нецелесообразно устанавливать существенно больше hск. На практике толщину металлизации выбирают с запасом в пределах h=(2...3)hск


2. Радиоволны в линиях передачи

Для передачи энергии электромагнитного поля от передатчика к передающей антенне, от приемной антенны к приемнику, от каскада к каскаду в радиосистеме применяют линии передачи. Иначе их называют фидерные линии от английского слова feed– питать. Например, фидерная линия, ведущая от генератора электромагнитных колебаний к антенне – это линия, питающая антенну электромагнитной энергией.

2.1 Типы передающих линий

В современных радиосистемах используют, в основном, четыре типа передающих линий – двухпроводную, коаксиальную, микрополосковую и волноводную – рис.2.1.


Подпись: Рис.2.1. Типы линий передачи
а) двухпроводная;      б) коаксиальная;
в) микрополосковая;  г) волновод – прямоугольный и круглый.


Простейшей линией является двухпроводная – это два параллельных металлических проводника. Если один провод расположен внутри другого, получается коаксиальная линия, или коаксиальный кабель. В каскадах СВЧ применяют микрополосковую линию (МПЛ), а также волноводы – трубы прямоугольного и круглого сечения. МПЛ – это два параллельных проводника - узкий и широкий, разделенных диэлектрической подложкой.

В линиях передачи электромагнитное поле существует в пространстве около проводников, а сами проводники подобны рельсам, задающим направление движения энергии поля.

Пространство между проводниками и линией может быть ничем не заполненным. В этом случае линии являются воздушными. Если между проводниками имеется диэлектрик, то это линия с диэлектрическим заземлением.

Для того, чтобы определить структуру электромагнитного поля в линии передачи, рассмотрим модель, справедливую для всех типов линий – это две параллельные бесконечные плоскости – рис.2.2


Подпись: Рис.2.2.  Модель передающей линии

Решим уравнения Максвелла для линии передачи, образованной двумя параллельными плоскостями, при следующих допущениях:

1) плоскости идеально проводящие, т.е. удельная электропроводность материала плоскости ;

2) диэлектрик между плоскостями идеальный, т.е. его удельная электропроводность ;

ищем решение в виде волн, распространяющихся вдоль оси z;

вдоль оси y плоскости бесконечны и электромагнитное поле вдоль этой оси не меняется;

линия возбуждается источником монохроматического поля.

При сделанных допущениях 1-е и 2-е уравнения Максвелла для комплексных амплитуд имеют следующий вид:

Раскрывая их и учитывая, что производные составляющих поля по оси y равны 0, получим 2 системы уравнений – первая относительно переменных ,,

,

; (2.1)

,

вторая - относительно переменных , ,

(2.2)

Система уравнений (2.1) описывает поля, у которых вектор напряженности магнитного поля  перпендикулярен направлению распространения z, в то время, как вектор  имеет проекцию на ось z. Такие поля называют поперечно магнитными, или поля TM – типа (Transverse Magnetic Waves). Иначе их называют полями E – типа.

Система (2.2) относится к поперечно – электрическим полям (Transverse Electrical Waves), т.е. полям ТЕ – типа (или полям H), поскольку здесь вектор напряженности электрического поля  перпендикулярен направлению распространения z - рис. 2.3. Рассмотрим структуру полей различных типов более подробно.


Подпись: Рис.2.3. Возможные типы полей в передающих линиях:
а) ТН - волны;               б) ТЕ - волны



2.2 Поперечно- магнитные волны

Из системы (2.1) исключим  и  и составим одно уравнение относительно

(2.3)

Получим уравнение эллиптического типа, для однозначного решения которого требуется задание граничных параметров [2].

Рассматриваемая линия передачи ограничена плоскостями, расположенными при следующих значениях координаты x: x = 0 и x = a.

На границе с проводником вектор  расположен таким образом, что может быть представлен суммой нормальной Eн и касательной Eкас составляющих-рис.2.4 диэлектрик.


Рис. 2.4. Электрическое поле на границе диэлектрик-проводник.

Наличие касательной составляющей электрического поля вызывает появление электрического тока плотностью

,

где  - удельная электропроводность проводника.

Поскольку плотность тока конечна, а проводимость идеального проводника, то нужно выполнение условия  при x = 0, x = a. В соответствии со вторым – уравнением системы (2.1) граничные условия для уравнения (2.3) запишем следующим образом:

, при x = 0, x = a.(2.4)

В приложении 5 получено решение уравнения (2.3) с граничными условиями (2.4). При отсутствии отражений оно может быть записано в следующем общем виде:

где - амплитуда напряженности магнитного поля прямой волны при z = 0 (m = 0, 1, 2, 3, …..),

,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

рефераты
Новости