рефераты рефераты
Главная страница > Учебное пособие: Основы радиосвязи  
Учебное пособие: Основы радиосвязи
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Основы радиосвязи

 ,Вт/м2.

Величина вектора Пойнтинга

,


где α – угол между векторами  и . В идеальном диэлектрике П = EH.

Вектор Пойнтинга  перпендикулярен плоскости расположения векторов  и  и его направление определяется «правилом винта» при вращении  к по кратчайшему расстоянию (рис.1)


Размерность величины вектора  - Вт/м2. Поэтому П – это энергия электромагнитного поля, проходящая в единицу времени через поверхность единичной площади, т.е. плотность потока мощности.

Энергия электромагнитного поля, выходящая из объема V в единицу времени, определяется формулой

,

где под интегралом – скалярное произведение векторов  и , а интеграл берется по замкнутой поверхности S, ограничивающий объем V.

В случае, если диэлектрик в объеме V - неидеальный (), то возникают токи проводимости плотностью  и, в соответствии с законом Джоуля – Ленца, часть энергии электромагнитного поля преобразуется во внутреннюю (тепловую) энергию диэлектрика.

Закон сохранения энергии определяется теоремой Пойнтинга:


-

где в левой части – скорость убывания энергии поля в объеме V, Pпот - количество теплоты, выделяющейся в 1 с в диэлектрике за счет протекания токов, т.е. мощность потерь, причем

,

где скалярное произведение  - это плотность мощности потерь, т.е. количество теплоты, выделяемой в единицу времени.

В соответствии с теоремой Пойнтинга, изменение энергии электромагнитного поля в объему V происходит по 2-м причинам. Во - первых, за счет движения энергии в пространстве, во – вторых, за счет нагревания диэлектрика при протекании токов проводимости.

1.5 Монохроматические волны в идеальном пространстве

Радиосигнал представляет собой сложную зависимость величин E и H от времени, спектр сигнал содержит множество частот. Если сигнал узкополосный, то его спектр сосредоточен вблизи несущей частоты и можно, в первом приближении, полагать, что колебания E(t) и H(t) имеют гармоническую форму, т.е. спектр содержит только одну частоту f, Гц (или циклическую частоту , рад/с).

Электромагнитные волны, в которых спектр колебаний содержит одну частоту, называют монохроматическими. Введение понятия монохроматических волн существенно упрощает анализ.

Предположим, что колебания распространяются вдоль одной оси z, т.е. E(t,z) и H(t,z) - функции 2-х переменных: t и z. В некоторой точке пространства z = 0 имеется источник электромагнитного поля

,

где Em - амплитуда колебаний.

Аналогично изменяется во времени и H(t,0). Считаем, что источник колебаний создает поле, которое не меняется по координатам x и y. В точке  напряженность электрического поля

,

где v- скорость распространения волны, или

(1.7)

Постоянная

 (1.8)

называется фазовым множителем. Если учесть, что , а длина волны

,

то


 (1.9)

и имеет другое название – волновой множитель, или волновое число.

Мгновенная фаза колебаний

(1.10)

- функция времени и координаты. Если объединить в пространстве все точки, в которых колебания синфазны, т.е. , то получим поверхность равных фаз. На этой поверхности в данный момент времени значения E одинаковы. Поверхность равных фаз называется волновой поверхностью. В рассматриваемом случае волновая поверхность является плоскостью, простирающейся в пространстве бесконечно вдоль координат y и x.

Вдоль координаты z плоскость движется со скоростью

,

называемой фазовой скоростью. Из (1.10) следует что

и фазовая скорость

,

т.е. совпадает со скоростью v, определяемой (1.3).

Итак, если источник поля создает гармонические колебания в плоскости z = 0, то в идеальном диэлектрике возникает плоская монохроматическая волна, у которой векторы  и  изменяются по закону

, (1. 11,а)

 (1.11,б)

и сдвинуты в пространстве на угол 900, фазовая скорость волны равна

,

а связь амплитуд напряженностей электрического и магнитного полей подчиняются формуле (1.5). Запишем, в каком соотношении находятся энергии электрического и магнитного полей в плоской волне.

Плотность энергии электрического поля

и учитывая (1.5), получим

Таким образом, энергия плоской волны состоит из равных долей энергии электрического и магнитного полей.


1.6 Поляризация радиоволн

Электромагнитные волны бывают поляризованными и неполяризованными. Волны называются поляризованными, если направления векторов  и  в пространстве могут быть определены в любой момент времени. Если же направления  и  изменяются во времени случайным образом, то волна называется неполяризованной. Для радиосвязи естественно использовать поляризованные волны, что даёт возможность эффективного приёма радиосигналов при известном законе изменения  и  в пространстве.

Виды поляризации различаются законом изменения в пространстве плоскости поляризации, т.е. плоскости, проходящей через вектора  и . Если плоскость поляризации остаётся неподвижной по мере распространения волны, то такая поляризация называется линейной. Примеры линейно поляризованных волн представлены на рис.1.2.

Вектор  может быть расположен под углом к плоскости х или у. В этом случае он образован суммой двух векторов:

Если векторы иколеблются синфазно во времени, то поляризация остаётся линейной. Если же антенной (при z=0) возбуждаются колебания и, сдвинутые по фазе на φ=±90º, например

то суммарный вектор Е вращается. Конец вектора  (а следовательно, и ) описывает окружность с центром в начале координат. Такая поляризация называется круговой.

В случае неравенства амплитуд колебаний и  поляризация становится эллиптической - рис.1.3. Круговую и эллиптическую поляризацию называют также вращающейся с левым или с правым вращением.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

рефераты
Новости