рефераты рефераты
Главная страница > Учебное пособие: Механика, молекулярная физика и термодинамика  
Учебное пособие: Механика, молекулярная физика и термодинамика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Механика, молекулярная физика и термодинамика

Ускорения тел а1 и а2 равны по модулю и направлены в противоположные стороны

                             .

Получаем из (1) и (2) систему уравнений.

Выберем ось Х, как показано на рисунке и запишем полученную систему уравнений

в проекциях на ось Х                    

Решая эту систему относительно а и FН, получаем:

                  = 3,3 м/с2;    = 13 Н.

Ответ: a = 3,3 м/c2 ; FH = 13 Н.

Задача 4 К ободу однородного диска радиусом R=0,2 м прило­жена касательная сила F=98,1 Н. При вращении на диск действует момент сил трения

МТР=4,9 Н×м. Найти массу m диска, если известно, что диск вращается с угловым ускорением e=100 рад/с2.

Дано:

 R = 0,2 м

F = 98,1 Н

MТР = 4,3 Н×м

e = 100 рад / c2

Решение

Воспользуемся основным законом динамики вращательного движения:  или в скалярной форме

, где

- момент сил, приложенных к телу ( MF - момент силы F, Mтр – момент сил трения );

m - ?

  - момент инерции диска.

Учитывая, что MF=F×R, получаем:     .

Отсюда               

                             m = 7,7 кг.

Ответ: m = 7,7 кг.

Задача 5

          Вагон массой 20 т, движущийся равнозамедленно, под действием силы трения в 6 кН через некоторое время останавливается. Начальная скорость вагона равна    54 км/ч. Найти работу сил трения и расстояние, которое вагон пройдет до остановки.

      Дано:

m = 20 × 10 3 кг

Fтр = 6 × 10 3 Н

u = 15 м/c

Решение

По закону сохранения механической энергии изменение полной механической энергии будет определятся работой неконсервативных сил, то есть

.

AТР - ? r - ?

Так как механическая энергия вагона равна его кинети­ческой энергии, в качестве неконсервативной силы выступает сила

трения, в конце пути скорость вагона равна нулю, то

.

Итак:

          По определению для работы, совершаемой постоянной силой трения:

             м.

Ответ: r = 375 м.

Задача 6 При упругом ударе нейтрона о ядро атома углерода он движется после удара в направлении, перпендикулярном начальному. Считая, что масса М ядра углерода в n=12 раз больше массы m нейтрона, определить, во сколько раз уменьшается энергия нейтрона в результате удара.

Дано:

Решение

Ведем обозначения: u1 – скорость нейтрона до удара, u1’ – после удара; u2 – скорость ядра углерода после удара (до удара она равна нулю). По законам сохранения импульса и энергии соответственно имеем:

a - ?

       

По условию задачи требуется найти отношение

          Из треугольника импульсов (смотри рисунок) имеем:

(mu1)2+(mu¢1)2=(Mu2)2.

С учетом записанных выражений, а также соотношения n=M/m, получим:

u12-u¢12=nu22;

u12+u¢12=n2u22.

Разделив почленно последние равенства, получаем:

.

Отсюда       =1,18.

Ответ: a = 1,18.

Задача 7 Круглая платформа радиусом R=1,0 м, момент инерции которой   I=130 кг×м2, вращается по инерции вокруг вертикальной оси, делая n1=1,0 об/с. На краю платформы стоит человек, масса которого m=70 кг. Сколько оборотов в секунду n2 будет совершать платформа, если человек перейдет в её центр? Момент инерции человека рассчитывать как для материальной точки.

Дано:

R = 1м

I = 130 кг × м2

n1 = 1c-1

m = 70 кг

Решение

Согласно условию задачи, платформа с человеком вращается по инерции. Это означает, что результирующий момент всех внешних сил, приложенных к вращающейся системе, равен нулю. Следовательно, для системы “платформа – человек” выполняется закон сохранения момента импульса, который запишем в скалярной форме:

                                                     L1 = L2 ,                                   (1)

n2 - ?

где L1 - импульс системы с человеком, стоящим на краю платформы, L2 - импульс системы с человеком, стоящим в центре платформы.

                                   L1 = I1w1 = (I+mR2)×2pn1,                                                  (2)

                                       L2 = I2w2 = I×2pn2,                                                           (3)

где   mR2 - момент  инерции  человека,  I1 = I+mR2 -  начальный  момент  инерции

системы, I2 - конечный момент инерции системы, w1 и w2 - начальная и конечная угловые скорости системы. Решая систему уравнений (1) - (3), получаем:

n2 = n1(I+mR2)/I = 1,5 об/с.

          Ответ: n2 = 1,5 с-1.

 

Задача 8

Определить кинетическую энергию (в электронвольтах) и релятивистский импульс электрона, движущегося со скоростью u = 0,9 c (-скорость света в вакууме).

Дано:

u = 0,9 c

Решение

          Т.к. скорость частицы сопоставима по значению со скоростью света в вакууме, то частицу нельзя считать классической. Для нахождения кинетической энергии воспользуемся формулой:

ЕК, р - ?

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

рефераты
Новости