рефераты рефераты
Главная страница > Учебное пособие: Механика, молекулярная физика и термодинамика  
Учебное пособие: Механика, молекулярная физика и термодинамика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Механика, молекулярная физика и термодинамика

Изменение размеров движущихся тел.

          где L’-длина стержня, расположенного вдоль оси  и покоящегося в системе S’ (отсчитывается в системе отсчета S’); L - длина этого же стержня, измеренная в системе отсчета .

Релятивистский закон сложения скоростей.

Пусть некоторое тело движется вдоль оси  x` в системе отсчета  со ско­ростью относительно последней. Найдем проекцию скорости  этого тела в систе­ме отсчета   на ось x этой системы:

.

5.3.  Релятивистские масса и импульс. Взаимосвязь массы и энергии.

Эйнштейн показал, что масса тела зависит от его скорости:

где m0 – масса тела в той системе отсчета, где тело покоится (масса покоя);

m – масса тела в той системе, относительно которой тело движется;

u – скорость тела относительно системы отсчета, в которой определяется масса m.

Релятивистский импульс:

,

где m – релятивистская масса.

Закон взаимосвязи массы и энергии:

,

где m - релятивистская масса;

          E – полная энергия материального объекта.

Кинетическая энергия объекта:

,

где - полная энергия;         - энергия покоя.

          Из закона взаимосвязи массы и энергии следует, что всякое изменение массы тела на Dm  сопровождается изменением его энергии на DE:

DE=Dm×c2.

Примеры решения задач

          Задача 1 Уравнение движения точки по прямой имеет вид:

x = A+Bt+Ct3, где А = 4 м, В = 2 м/c, С = 0,2 м/с3. Найти: 1) положение точки в моменты времени t = 2 c и t = 5 с; 2) среднюю скорость за время, протекшее между этими моментами; 3) мгновенные скорости в указан­ные моменты времени; 4) среднее ускорение за указанный промежуток вре­мени; 5) мгно­венные ускорения в указанные моменты времени.

      Дано:

x = A + Bt + Ct3

A = 4 м

B = 2 м/c

C = 0,2 м/c3

t1 = 2 c; t2 = 5 c

Решение

          1. Чтобы найти координаты точки, надо в уравнение движения подставить значения t1 и t2:

                                        x1 = (4+2×2+0,2×23) м = 9,6 м,

                              x2 = (4+2×5+0,2×53) м = 39 м.

x1, x2 <u>- ?

u1, u2 - ?

<a> a1, a2 - ?

2. Средняя скорость,      

           м/с = 9,8 м/с.

3. Мгновенные скорости найдем, продифференцировав по времени уравнение движения:                                   

 u1 = (2+3×0,2×22) м/с = 4,4 м/c;

u2 = (2+3×0,2×52) м/с = 17 м/с.

4. Среднее ускорение  ,

 м/c2 = 4,2 м/с2.

          5. Мгновенное ускорение получим, если продифференцируем по времени выражение для скорости: a = 2×3×Ct = 6Ct.

a1 = 6×0,2×2 м/c2 = 2,4 м/с2;

                                                  a2 = 6×0,2×5 м/с2 = 6 м/с2.

 

Задача 2  Маховик вращается равноускоренно. Найти угол  a, ко­то­рый составляет вектор полного ускорения любой точки маховика с радиусом в тот момент, когда маховик совершит первые N=2 оборота.

 


Дано:

w0 = 0.

N = 2

e = const

Решение

Разложив вектор  точки М на тангенци­аль­ное  и нормальное  уско­ре­ния, видим, что иско­мый угол определяется соотно­шением tga=at/an. Поскольку в условии дано лишь число оборотов, перейдем к угловым величинам. Применив формулы:

a - ?

                             at = eR, an = w2R,  где R – радиус маховика, получим

            tga =

так как маховик вращается равноускоренно, найдем связь между величинами e и w;  

                     ;

Поскольку w0 = 0; j = 2pN, то w2 = 2e×2pN = 4pNe.

Подставим это значение в формулу, получим:

     a  » 2,3°.

Ответ: a  » 2,3°.

Задача 3 Две гири с массами m1 = 2 кг и m2 = 1 кг соединены нитью, пе­ре­ки­ну­той через невесомый блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити  . Трением в блоке пренебречь.


Дано:

m1 = 2 кг

m2 = 1 кг

Решение

    Воспользуемся для решения задачи основным законом динамики

                                            

где     – равнодействующая всех сил,  действующих на тело.

a, FН  - ?

           На тело 1 и тело 2 действуют только две силы – сила тяжести  и сила

натяжения нити. Для первого тела имеем:

                                                                 (1)

  для второго тела:   

                             .                                  (2)

Так как сила трения в блоке отсутствует,

                                       .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

рефераты
Новости