рефераты рефераты
Главная страница > Дипломная работа: Рентгеноструктурний аналіз молибдену  
Дипломная работа: Рентгеноструктурний аналіз молибдену
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Рентгеноструктурний аналіз молибдену

У тривимірному k -просторі вони мають вид многогранників, форма яких визначається симетрією кристалічної гратки, а розміри — параметрами гратки. Для гранецентрованої кубічної гратки перша зона Бріллюена є октаедром, а для об'ємно-центрованої гратки — кубічний додекаедр. Усередині зони Бріллюена енергія електрона безперервно змінюється з хвильовим числом по параболічному закону

E(k) = h2k2/(8π2m) (106)

Імпульс і хвильовий вектор електрона зв'язані співвідношенням де Бройля р = hk/(2π). У міру наближення хвильового вектора до межі зони енергія електрона відхиляється від параболічної залежності, швидкість його руху сповільнюється, що можна пояснити збільшенням ефективної маси mэф.

Дійсно, електрон в періодичному полі гратки прискорюється зовнішнім електричним полем, якщо

 (107)

На межі зони d2E/dk2 перетворюється в нуль, а маса — в нескінченність. Відбувається як би віддзеркалення електронів від площин гратки.

Існування меж зон Бріллюена узгоджується з умовою Вульфа— Брегга для дифракційних максимумів рентгенівського випромінювання. Відомо, що при 2dcosα = mλ пучок рентгенівського випромінювання повністю відбивається від площин кристала. Якщо записати цю умову у вигляді |(kn)| =±πm/d то ми одержимо не що інше, як рівняння площини, що визначає межі зон Бріллюена.

Таким чином, межі зон Бріллюена відповідають таким значенням імпульсів електронів, при яких відбувається дифракція електронних хвиль, що імітують рух електронів провідності металу.

Важлива характеристика енергетичного спектру електронів — ізоенергетична поверхня Фермі, яка в тривимірному k -просторі служить межею між зайнятими і вакантними рівнями. Тверді тіла, у яких поверхня Фермі проходить в дозволеній зоні, є металами, а тіла, у яких енергетичний спектр складається із заповнених і порожніх зон, — діелектриками або напівпровідниками.

Поверхні Фермі у електронів провідності різних металів складні і не схожі одна на одну. У майже вільних електронів поверхня Фермі сферична. Її радіус визначається по формулі

KF = (3π2 ρZ)1/3 (108)

Електрони, розташовані поблизу поверхні Фермі, володіють максимальною енергією, званою енергією Фермі. Саме ці електрони обумовлюють електропровідність металу. При русі в розплаві вони розсіваються атомами металу. У боровському наближенні довжина вільного пробігу l електронів обчислюється з рівняння

 (109)

а питома електропровідність — по формулі

 (109`)

Тут e заряд електрона; nZ — число валентних електронів в одиниці об'єму; S = 2kF sinθ; φ(S) — Фурье-образ псевдопотенціалу електрон-іонної взаємодії.

Під псевдопотенціалом мається на увазі ефективний періодичний потенціал, що змінює стан руху електронів в розплаві. Електрони провідності відштовхуються від електронних оболонок атомів. Разом з тим вони притягуються до атомних ядер. Різниця між тяжінням і відштовхуванням і представляє розсіюючий потенціал, або псевдопотенціал. Як випливає з (109`), для обчислення питомої електропровідності рідкого металу використовують не всю функцію а(S), а лише ті її значення, які лежать в межах 0 < S <2kF . Наприклад, для рідкого срібла (Z = 1; ρ = 0,051 ат/ Å3) k = 1,15 Å-1.Функція а(S) має межу при S = 2,30 Å -1, тобто зліва від першого максимуму.

Верхня межа інтеграції в (109) означає, що в рідкому металі зберігається контур поверхні Фермі, усередині якої укладені електрони провідності. Оскільки Sмакс = 4π/λмин, то на прикладі срібло видно, що мінімальна довжина хвилі електронів провідності λмин = 5,46 Å. Якщо б електрони в металі були абсолютно вільні, то їх розсіювання на атомах при русі в зовнішньому електричному полі можна було б спостерігати при тих же значеннях S, що і у разі рентгенівського випромінювання. Досвідом це не підтверджується. Отже, різка верхня межа структурного чинника, що описує розсіювання електронів провідності, пояснюється зонною структурою енергетичного спектру електронів. Можливість обчислення електропровідності рідких металів по значеннях інтерференційної функції і псевдопотенціалу підтверджує наявність прямого зв'язку між структурою і електричними властивостями. На це вперше вказав А. Ф. Іоффе. По думці вченого, процес утворення електронів провідності безпосередньо пов'язаний з ближнім порядком і електронною конфігурацією атомів.

Параметри, визначувані по кривих розподілу атомної густини

З'ясуємо, яку інформацію про структуру рідин і аморфних тіл можна одержати, аналізуючи функцію 4πR2ρат(R). Графічно її зображають кривими, що осцилюють щодо 4πR2<ρат>. Як приклад приведемо криві радіального розподілу атомів для рідкого олова і аморфного селену (мал. 2.14).

Перша одержана рентгенографічно А.Ф. Ськришевськім, а друга — електрографічно Я.І. Стецивом. Для олова (див. мал. 2.14) крива після першого максимуму не досягає осі абсцис, а на кривий для селену перший максимум дискретний. Нерозв'язність піків функції 4πR2ρат(R) відображає наявність в рідині руху трансляції атомів, безперервне переміщення їх з однієї координаційної сфери в іншу і навпаки. Дискретність першого піку функції 4πR2ρат(R) є доказом існування фіксованих положень атомів; поступальні переміщення атомів з одних рівноважних положень в інші не спостерігаються. Таким чином, криві функції 4πR2ρат(R) для атомарної рідини і твердої аморфної речовини принципово відрізняються тим, що в аморфній речовині перший пік цієї функції розділений проміжком, де 4πR2ρат(R) = 0, тоді як в рідині навіть перший пік не визначений з боку великих R. Загальним для рідин і аморфних речовин є розмитість піків радіальної функції атомної густини. Розмитість їх відбувається унаслідок коливань атомів навколо положень рівноваги і статистичного розкиду центрів коливань.

Положення максимумів на кривій 4πR2ρат(R) визначає найвірогідніші відстані, площа під максимумами дає середнє число сусідніх атомів, ширина максимуму на половині його висоти — середньоквадратичне відхилення атомів від рівноважного положення, крива розподілу в цілому характеризує ближній порядок в рідині і аморфній речовині.

Визначення координаційних чисел. У разі аморфного селену площа першого піку на кривій розподілу при R1 = 2,32 Å рівна двом, а другого при R2 = 3,7 Å — восьми, що відповідає числу атомів на даних відстанях. Гратка кристалічного селену складаються із зигзагоподібних гвинтових ланцюжків, кожен атом в яких ковалентно пов'язаний з двома найближчими атомами, а ланцюжки між собою — силами Ван-дер-Ваальса. Відстань між найближчими атомами в ланцюжку рівна 2,34 Å, а між атомами сусідніх ланцюжків — приблизно 3,8 Å. Отже, в аморфному селені зберігається ближній порядок такої ж, як в кристалічному. Неізольованість першого і подальших піків на кривій розподілу для рідкого олова утрудняє вимірювання площі під ними. Кількісно можна інтерпретувати тільки перший максимум функції 4πR2ρат(R), обчислити тільки перше координаційне число. При цьому площу під максимумом виділяють двома способами: симетрично, тобто як би дзеркальним відображенням лівої гілки кривої щодо перпендикуляра, опущеного з вершини максимуму на вісь R, і несиметрично — продовженням спадаючої правої гілки кривої до перетину її з віссю абсцис. Перший спосіб заснований на припущенні, що відхилення атомів однакове як у бік збільшення, так і у бік зменшення R щодо рівноважного R1. Координаційне число знаходиться обчисленням інтеграла

 (110)

другий спосіб визначення n1 заснований на припущенні, що перший пік функції 4πR2ρат(R) є як би дзеркальним відбиттям кривої залежності потенційної енергії взаємодії атомів від відстані між ними (див. мал. 1.4). У рідинах коливання атомів щодо рівноважних положень ангармонічні. Сили відштовхування з боку центрального атома обмежують зсуви сусідніх атомів від рівноважного положення у бік менших R. Атомы мають набагато більшу свободу руху у бік зростання R щодо рівноважної відстані R1. В результаті в середньому на рівних відстанях від R1знаходиться неоднакове число атомів: при R1R' їх менше, ніж при R1+ R' що і обумовлює асиметрію першої координаційної сфери щодо R1. Число атомів в першій координаційній сфері визначається інтегралом

 (R" > R') (111)

Таким чином, залежно від способу виділення площі першого максимуму кривої розподілу для координаційного числа n1 виходять різні значення. Для рідкого олова по формулі (110) знаходимо n1 = 8,6, а по формулі (111) — n1 = 9,7. У кристалічній гратці олова n1 = 4 + 2 + 4.

Координаційне число, як один із структурних параметрів рідини, пов'язане з взаємодією найближчих сусідів. Значущість цього числа полягає у тому, що воно дозволяє скласти наочне уявлення про характер зміни упаковки при плавленні і подальшому нагріванні розплаву. Проте структура рідини в цілому описується не координаційними числами і радіусами координаційних сфер, а радіальними функціями розподілу. Теоретичні і експериментальні дослідження показують, що координаційне число в рідині є не числом в буквальному розумінні, а своєрідною функцією густини і температури. Координаційні числа мають точні значення лише в кристалі, де функція 4πR2ρат(R) дискретна. У рідині вони піддаються флуктуаціям. По теоретичних розрахунках І. 3. Фішера, в рідких металах флуктуація першого координаційного числа n1 складає 10%, а другого n230—40%. Такі високі значення флуктуації координаційних чисел є слідством руху трансляції атомів разом з коливальним. Найвірогідніше число найближчих сусідів в рідині може не співпадати з середнім його значенням. Тому кількісний опис розподілу найближчих сусідів повинен бути відображене не середнім координаційним числом n1, а функцією розподілу W(n1) визначаючої вірогідність виявлення різного числа найближчих сусідів на даній відстані. У простому випадку функція W(n1) може бути представлена дискретним гаусовим розподілом

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости