рефераты рефераты
Главная страница > Дипломная работа: Рентгеноструктурний аналіз молибдену  
Дипломная работа: Рентгеноструктурний аналіз молибдену
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Рентгеноструктурний аналіз молибдену

У основі дії сцинтиляційного лічильника лежить здатність кристала NaI (Tl) випускати світлові спалахи під дією заряджених частинок або рентгенівського випромінювання. За допомогою фотоелектронного помножувача ці спалахи перетворяться в електричні імпульси. Процес утворення електричного імпульсу, відповідного енергії фотона падаючого випромінювання, відбувається таким чином. Фотони рентгенівського випромінювання, проникаючи в сцинтилятор, втрачають свою енергію на іонізацію, збудження і частково на дисоціацію молекул. Частина цієї енергії перетвориться в енергію випромінювання—сцинтиляції. Фотони сцинтиляцій, потрапляючи на катод ФЕП, вибивають з нього електрони, кожний з яких, швидшаючи в електричному полі на шляху до першого діноду, одержує енергію, достатню для того, щоб вибити з нього n електронів. Цей процес, розвиваючись лавиноподібно від дінода до діноду, створює на виході ФЕП електричний імпульс, пропорційний кількості електронів, вибитих з фотокатода. З виходу ФЕП імпульс подається на підсилювач, а потім на дискримінатор, який виділяє зі всього спектру імпульсів тільки ті, амплітуда яких відповідає енергії когерентно розсіяних рентгенівських фотонів.

На мал. 4.4 показана схема установки для дослідження структури рідин. Пучок рентгенівського проміння, що вийшов з трубки 1, після формування в коліматорі S1 прямує на циліндровий зразок 2 рідини. Минулий крізь нього первинний пучок поглинається пасткою 3. На шляху розсіяних променів знаходиться кристал 4, який відбиває Kα -випромінювання, реєстроване сцинтіляційним лічильником 5. Розташування монохроматора після зразка дозволяє звести до мінімуму попадання в лічильник флуоресцентного випромінювання. Для отримання картини розсіювання від плоского зразка застосовує θ—θ - дифрактометр. Його особливість полягає у тому, що в процесі зйомки відбувається обертання рентгенівської трубки і лічильника назустріч один одному навколо осі, що проходить через точку зіткнення рентгенівського променя з поверхнею зразка. При цьому кут, під яким випромінювання падає на поверхню зразка, зберігається рівним половині кута розсіювання. Тим самим виключається чинник абсорбції, оскільки він не залежить від кута розсіювання. У сучасній рентгенівській апаратурі для вимірювання кутового розподілу інтенсивності розсіяного випромінювання застосовують дифрактометри, забезпечені сцинтиляційними лічильниками і рахунково-вирішальними пристроями.

Відзначимо, що найважливішою характеристикою сцинтиляційного лічильника і всієї реєструючої апаратури є дискримінаційні криві, які показують залежність кількості зареєстрованих імпульсів від початкового порогу дискримінації при ширині вікна дискримінації 1 В. Форма дискримінаційних кривих залежить від спектрального складу рентгенівського випромінювання, що направляється на сцинтилятор, напруги на фотопомножувачі і коефіцієнта посилення. Незмінність за часом дискримінаційної кривої залежить від стабільності роботи всього комплексу рентгенівської апаратури. При правильному виборі режимів, роботи лічильника амплітудний розподіл реєстрованих імпульсів монохроматичного випромінювання має вигляд, показаний на мал. 4.5.

На кривій повинні бути чітко видно шумова частина і пік максимальної амплітуди реєстрованого випромінювання. Подібну криву амплітудного розподілу можна одержати шляхом підбору напруги на ФЕП і коефіцієнта підсилення. Відсікаючи порогом дискримінації шуми лічильника і встановивши потрібну ширину вікна дискримінації, можна добиватися високої монохроматизації реєстрованих імпульсів. Відповідно до приведеної кривої для Cu-випромінювання значення порогу дискримінації на максимумі кривої повинне бути рівне 24 В. Обрав ширину вікна рівної 18 В, одержимо умови дискримінації, при яких практично весь пік дискримінаційної кривої реєструватиметься рахувальним пристроєм, забезпечуючи тим самим достатній рівень монохроматізациі і високу інтенсивність. Відношення ΔU (ширина дискримінаційної кривої на половині висоти) до Umax характеризує амплітудний розподіл реєструючої апаратури і для мідного випромінювання складає близько 50 %.

Важливою умовою ефективності лічильника є ширина його вхідної щілини. Вона повинна бути такою, щоб не розмивати істинний профіль дифракційних максимумів і в той же час забезпечувати достатньо реєстровану інтенсивність розсіяного випромінювання. Звично ширину приймальної щілини лічильника і щілини коліматора вибирають приблизно рівною.

Реєстрація розсіяних електронів здійснюється за допомогою фотопластин, а нейтронів — за допомогою лічильників, наповнених трьохфтористим бором. Ядра бору сильно поглинають нейтрони. Захопивши нейтрон, ядро бору перетворюється на ядро літію з випуском α – випромінювання:

 

10n + 105B→73Li + 42He

Альфа-випромінювання реєструється лічильником по іонізації газу.

Зразки для дослідження

Для отримання кривих інтенсивності від рідини з малим коефіцієнтом поглинання рентгенівського випромінювання застосовують циліндрові зразки. Вони є трубками з пірексового скла завтовшки стінки не більш 0,01—0,03 мм, наповнені досліджуваною рідиною і ретельно запаяні з обох кінців. Замість скляних трубок використовують кювети з дуже тонкими плоско паралельними віконцями.

Оскільки в цих випадках рентгенограми виходять в проходячому промінні, необхідно брати зразок оптимальної товщини, оскільки дуже тонкий шар містить недосить розсіюючої речовини, а в товстому шарі відбувається велике поглинання.

Оптимальна товщина шаруючи речовини, що бере участь в розсіянні рентгенівського випромінювання, рівна зворотному значенню коефіцієнта лінійного ослаблення:

l0 = 1/μ (128)

де

Тут ρ — густина речовини; М — молярна маса; μ/ρi — масовий коефіцієнт ослаблення i-го атома; Ai — його атомна маса; ni — число атомів i-го сорту.

При дослідженні рідин з великим, коефіцієнтом поглинання рентгенограми виходять відбиттям від вільної поверхні зразка. В цьому випадку дифракційна картина фіксується з тієї сторони від поверхні рідини, з якою на неї прямує первинний потік рентгенівського випромінювання. При цьому кут між первинним пучком і горизонтальною поверхнею зразка не повинен перевищувати 8—10°, інакше інтерференційні максимуми можуть виявитися у області геометричної тіні зразка.

Якщо вимагається одержати рентгенограму від рідини при високих температурах (метали), її поміщають в тигель з тугоплавкого матеріалу, що хімічно не взаємодіє з розплавленим металом. Нагрів зразка здійснюється електричним струмом. Для усунення можливості окислення зразка камеру наповнюють гелієм. При дослідженні рідин методом дифракції нейтронів застосовують зразки у вигляді кварцових, алюмінієвих або ванадієвих ампул, заповнених досліджуваною речовиною і ретельно запаяних з обох кінців. Діаметр зразка залежить від поглинаючої здатності рідини. Звично він порядка 10—15 мм. Зразки для отримання електронограм рідин і твердих аморфних речовин є плівками завтовшки 300—500 Å.

Внесення поправок на поляризацію і поглинання

Рентгенівське випромінювання при розсіянні речовиною частково поляризується, унаслідок чого ослабляється його інтенсивність. Разом з тим необхідно знайти інтенсивність, яка спостерігалася б за відсутності поляризації.

Якщо крива інтенсивності одержана у фільтрованому випромінюванні, то поправка на поляризацію обчислюється по формулі

P(θ) = (1 + cos2 2θ)/2 (129)

де 2θ — кут розсіювання.

Якщо ж первинний потік рентгенівського випромінювання монохроматизується при відбиванні від монокристала, то формула для обчислення поправки на поляризацію має вигляд

P(θ) = (1 + cos2 2θ cos2 2φ)/2 (130)


де φ — кут відбивання від відповідної площини монокристала. Поляризаційний чинник для нейтронів і електронів при їх розсіянні рівний одиниці.

При взаємодії рентгенівського випромінювання, електронів і нейтронів з речовиною частина їх енергії перетворюється на різні види внутрішньої енергії речовини і в енергію вторинного випромінювання. Це приводить до часткового поглинання падаючого на зразок випромінювання. Тому інтенсивність розсіювання не може бути правильно визначена без внесення поправки на поглинання. Ця поправка залежить від форми зразка і кута розсіювання. У разі плоского зразка при зйомці на проходження проміння ця поправка обчислюється по формулі

 (131)

де l — товщина зразка; μ — лінійний коефіцієнт поглинання; x = (1—cos2θ)/cos(2θ)

При зйомці на відбивання від плоскої поверхні зразка поправка на поглинання задається формулою

 (132)

де α — кут, під яким випромінювання падає на поверхню рідини.

Якщо під час зйомки на θ—θ -дифрактометрах зберігається постійність кутів (α = θ), то з (132) витікає, що А не залежить від кута розсіювання А = 1/(4μ).

У разі циліндрового зразка поправка на поглинання може бути розрахована по формулі

 (133)

де R0 — радіус зразка; an — коефіцієнт, залежний від кута розсіювання.

Значення A(θ) протабульовано для різних μR0. Знаючи з умов експерименту μR0 знаходимо за табличними даними A(θ). Внесення вказаних поправок можливо зробити при діленні експериментальних значень інтенсивності на добуток чинників поляризації і поглинання.

Нормування кривих інтенсивності

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости