рефераты рефераты
Главная страница > Дипломная работа: Реконструкция СЭС обогатительной фабрики  
Дипломная работа: Реконструкция СЭС обогатительной фабрики
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Реконструкция СЭС обогатительной фабрики

Iпик = I`пуск + (Ip – Kи · Iном.max),                               (70)

где    I`пуск – наибольший пусковой ток двигателя, входящего в группу, А;

Iр – расчётный ток нагрузки группы ЭП, А;

Kи – коэффициент использования механизма, приводимого электродвигателем с наибольшим пусковым током;

Iном.max – номинальный (приведённый к ПВ = 100%) ток электродвигателя с наибольшим пусковым током, А.

При определении потери напряжения в троллейной линии расчётные и пиковые токи определяют отдельно для питающей троллеи линии и для каждого плеча троллеев с учётом схемы подвода питания. Расчёт тролленйых линий на потерю напряжения следует производить при наиболее неблагоприятном расположении кранов в пролётах цеха /2 с. 190/.

Потеря напряжения, В, в троллеях

Uт = e · Iпик · L / 10 000,                                 (71)

где    e – потеря напряжения на 100 А пикового тока и 100 м длины троллея, В/(А·м);

L – длина троллеев в один конец от точки подключения питающей линии, м;

Исходя из технологии производства и размеров цеха принимаем длину троллеев 200 м, подвод питания осуществляем в середине. Расстояние между фазами троллеев 250 мм. Троллейную линию выполняем из угловой стали 50х50х5 мм.

Параметры двигателей крана указаны в таблице 12, а расчётная нагрузка двигателей крана найдена в таблице 2.

Таблица 12 – Параметры двигателей крана

Механизм крана Мощность двигателей, кВт Номинальный ток, А

Главный подъём

Вспомогательный подъём

Механизм передвижения моста

Механизм передвижения тележки

22

11

2 х 16

3,5

56,5

30,8

2 х 45

10,3

Итого 68,5

Используя найденные ранее данные о расчётной нагрузке крана и параметры его двигателей проведём расчёт троллейных линий (приложение 7.3).

7.3.2 Расчёт осветительных установок участка

Особенностями осветительных сетей электрических сетей по сравнению с сетями силовых ЭП являются: значительная протяжённость и разветвлённость, небольшие мощности отдельных ЭП и участков сети, наличие установок рабочего и аварийного освещения.

Для промышленных предприятий характерно два вида освещения: рабочее и аварийное. Рабочее освещение обеспечивает надлежащую освещённость всего помещения и рабочих поверхностей, аварийное – продолжение работы или безопасную эвакуацию людей из помещения при аварийном отключении рабочего освещения. Участки осветительной сети от источников питания (ИП) до групповых щитков освещения называют питающими, а от групповых щитков до светильников – групповыми. Питающие сети выполняются трёх- и четырёхпроводными, групповые линии в зависимости от протяжённости и количества подключаемых электроприёмников могут быть двух-, трёх- и четырёхпроводными.

Питающие сети для осветительных установок (ОУ) и силового электрооборудования рекомендуется выполнять, как правило, раздельными.

В производственных зданиях с несколькими встроенными КТП применяются схемы перекрестного питания рабочего и аварийного освещения (АО), при которых рабочее освещение одних участков здания питается от одной КТП, а АО – от другой, трансформатор которой не используется для питания рабочего освещения.

Расчёт осветительной сети состоит из определения сечения проводов во всех её звеньях, которые бы гарантировали: нагрев проводов, не превышающий допустимые значения температуры; допустимые значения потерь напряжения у наиболее удалённого от источника питания источника света (ИС); достаточную механическую прочность проводов

Осветительные сети чаще всего рассчитываются по допустимой потере напряжения с последующей проверкой на нагрев.

7.3.3  Расчёт осветительной сети по допустимой потере напряжения

Допустимая потеря напряжения в осветительной сети /2 с.181/, то есть потеря напряжения на участке от источника питания (обычно шин низшего напряжения ТП ) до последней лампы, в % номинального напряжения, подсчитывается по формуле

U = U0 - Umin -U т                                  (72)

где    U0 – напряжение холостого хода на вторичной обмотке трансформатора и равное 105 % номинального напряжения лампы;

Umin- наименьшее напряжение, допускаемое у ИС, % номинального (принимается равным 95% );

U т - потери в трансформаторе /2 с.180/, приведенные к вторичному номинальному напряжению и зависящие от мощности трансформатора, его загрузкии коэффициента мощности нагрузки, %.

ΔUт = т · cos  · (Uа% + Uр% · tg ),                           (73)

где    т – коэффициент загрузки трансформатора расчётной средней мощностью;

cos  – коэффициент мощности нагрузки трансформатора и соответствующий его значению tg ;

Uа% – активная составляющая напряжения КЗ трансформатора:

,                                                    (74)

где    Pk,ном – номинальные потери мощности КЗ трансформатора, кВт;

Sном,т – номинальная мощность трансформатора, кВА.

Uр% – реактивная составляющая напряжения КЗ трансформатора:

,                                                (75)


где    uк% – напряжение КЗ трансформатора.

Расчет допустимой потери напряжения в осветительной сети участка флотомашин представлен в приложении 7.4.

7.3.4 Выбор сечения проводов осветительной сети

Когда необходимо рассчитать сечения проводов разветвлённой осветительной сети и при этом выполнить условия, обеспечивающие минимальный расход проводникового материала /2 с.185/, пользуются формулой:

,                                            (76)

где    M – сумма моментов нагрузки данного и всех последующих по направлению потока энергии участков осветительной сети (включая ответвления с тем же числом проводов в линии, что и данный рассчитываемый участ), кВт·м;

M – сумма моментов нагрузки всех ответвлений, питаемых через данный участок с другим числом проводов, отличным от числа проводов данного участка, кВт·м;

бпр – коэффициент приведения моментов /2 табл.3.17/, зависящий от числа проводов на участке линий и в ответвлении.

С – коэффициент зависящий от системы сети и материала проводника /2 табл. 3.13/.

При нескольких сосредоточённых нагрузках или если участок линии имеет равномерно распределённую по длине нагрузку, что имеет место в осветительной распределительной сети, сумму моментов можно заменить моментом одной нагрузки с длиной линии, равной длине Lприв.

В частности, для нагрузки, равномерно распределённой по длине линии, м,

,                                               (77)

где    L0 – расстояние от пункта питания до точки присоединения первой нагрузки, м;

L – длина участка сети с равномерно распределённой нагрузкой, м.

В этом случае момент нагрузки

,                                              (78)

где    р – узловая мощность нагрузки.

После выбора сечения кабеля находим действительную потерю напряжения по формуле:

,                                               (79)

Расчет сечения проводов осветительной сети представлен в приложении 7.5.

7.3.5 Проверка выбранного сечения осветительной сети по нагреву Расчётный ток для двухпроводной осветительной сети

,                                         (80)

где    Pном – суммарная установленная мощность ИС в групповой линии;

Uф – фазное напряжение осветительной сети;

cos – мощности ИС.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

рефераты
Новости