рефераты рефераты
Главная страница > Дипломная работа: Реконструкция СЭС обогатительной фабрики  
Дипломная работа: Реконструкция СЭС обогатительной фабрики
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Реконструкция СЭС обогатительной фабрики

1) По номинальному напряжению выключателя установки

Uуст Uном,                                                           (53)

2) По номинальному току выключателя установки с учетом возможного увеличения тока в ближайшие годы

Iнорм Iном ; Imax Iном ,                                         (54)

3) По отключающей способности. Расчет Iп,0 проводится для наиболее тяжелого случая при трехфазном КЗ


Iп,0 Iо,ном ,                                                            (55)

4) По апериодической составляющей тока КЗ в момент расхождения контактов, которая должна быть равна или меньше допустимого значения апериодической составляющей по данным, гарантируемым заводом-изготовителем

,                                    (56)

где βном% - номинальное содержание апериодической составляющей, %, определяемое как отношение апериодической составляющей к действующему значению периодической составляющей тока КЗ в момент прекращения соприкосновения дугогасительных контактов выключателя. Принимается по кривой /2, с.155, рис. 2.37/

5) По электродинамической стойкости. Амплитудное значение ударного тока при включении на КЗ должно быть равно или меньше наибольшего пика тока включения выключателя

iу iвкл.наиб ,                                        (57)

6) По термической стойкости

Bk I2тер tтер ,                                              (58)

Для проверки выключателя на термическую стойкость необходимо рассчитать тепловой импульс:

,                                                   (59)


где               Вк – тепловой импульс,кА2×с;

Iп,0 – действующее значение периодической составляющей начального тока КЗ, кА;

tотк – время отключения, с;

Время отключения находится из выражения:

,                                   (60)

где tрз – время действия релейной защиты, с;

tов – время отключения выключателя, с.

Принимают tрз=0,1 с для Uн= 6-20 кВ;

7) По условиям эксплуатации выключателя, которые должны соответствовать требованиям каталога на выключатель.

8) По требуемой механической и коммутационной износостойкости выключателя, которая должна соответствовать данным, гарантируемым каталогом.

9) По требованию к приводу выключателя.

10) По временным параметрам выключателя (время включения и отключения, бестоковой паузы цикла АПВ), которые должны соответствовать требованиям эксплуатации.

11) По требованию ПВН (кривая переходного восстанавливающегося напряжения (ПВН) не должна пересекаться с нормированными кривыми ПВН.

Значения нормированных характеристик собственного переходного восстанавливающегося напряжения, а также значения нормированных (предельных) скоростей восстанавливающегося напряжения для выключателей с Uном до 35 кВ включительно для различных значений отключаемого тока КЗ в сети приведены в /2, с.151, табл.2.60/.

В электрических сетях промпредприятий при проверке отключающей способности выключателей по условиям восстанавливающегося напряжения требуется, чтобы скорость восстанавливающегося напряжения в цепи установки выключателя не превышала предельных нормированных значений, допустимых для данного выключателя.

Скорость восстанавливающегося напряжения может быть определена по формуле:

,                                (61)

где Iп0 – периодическая составляющая отключаемого тока КЗ, кА;

Zл – волновое сопротивление линии, Ом, при одном проводе в фазе равное 450 Ом;

n – число линий, остающихся в работе после отключения КЗ;

Кс – коэффициент, учитывающий влияние емкости в в рассматриваемой сети. Зависит от параметра А равного

,                                       (62)

где С – емкость сети, Ф, определяется по формуле:

,                                         (63)

где nт – число подключенных трансформаторов;

С0 – емкость кабельных линий, не учитываемых в числе nл;

Х – индуктивное сопротивление, принимаемое при расчете КЗ, Ом.

Вводные выключатели – вакуумные типа ВВТЭ-10-20УХЛ2

Линейные выключатели – ВВТЭ-10-10УХЛ2

Секционные выключатели – вакуумные типа ВВТЭ-10-20УХЛ2

Проверку осуществим на примере вводных выключателей

Таблица 6 – Выбор высоковольтных выключателей

Перенапряжения, возникающие при коммутации индуктивных токов вакуумными выключателями

При коммутациях индуктивных токов вакуумных выключателей могут возникать перенапряжения, обусловленные: срезом тока, многократными повторными зажиганиями и трехфазным одновременным отключением. Перенапряжения эти, вследствие вероятностного характера процессов в выключателе, определяются статистическими соотношениями, зависящими от схемы и параметров коммутируемой сети.

Наибольшую опасность представляют собой коммутационные перенапряжения для электродвигателей, имеющих пониженные, по сравнению с трансформаторами, уровни изоляции и в особенности пониженную импульсную прочность обмотки при воздействии волн с крутым фронтом.

Волновые сопротивления двигателей примерно на два порядка ниже, чем у трансформаторов, поэтому уровни перенапряжений при обычном срезе тока также значительно ниже. Однако включение двигателя или отключение его пускового тока, как правило, сопровождается многократными повторными зажиганиями и воздействиями волн перенапряжений с крутым фронтом. При определенном сочетании параметров схемы и начальных условий наблюдается постепенное нарастание максимумов волн (эскалация напряжений), при котором они могут достигать 5-кратных значений по отношению к фазному напряжению двигателя.

Для защиты электрооборудования от коммутационных перенапряжений применяются нелинейные ограничители перенапряжений (ОПН), которые состоят из нелинейных резисторов, заключенных в изоляционную покрышку. Резисторы выполнены из последовательно-параллельно включенных керамических резисторов на основе окиси цинка.

 Защитное действие ограничителя обусловлено тем, что при появлении опасного для изоляции перенапряжения вследствие высокой нелинейности резисторов через ОПН протекает значительный импульсный ток, в результате чего перенапряжение снижается до уровня, безопасного для изоляции защищаемого оборудования.

В настоящее время предложены следующие технические решения по схемам защиты от перенапряжений электрооборудования 6 – 10 кВ, коммутируемого вакуумными выключателями, в установках промышленных предприятий /2, с.237/:

1) Для защиты трансформаторов общего назначения с облегченной изоляцией (сухие, литые) у вводов трансформатора между каждой фазой и землей должен быть подсоединен ОПН для соответствующего класса напряжения.

2) Для защиты электродвигателей между зажимами каждой фазы двигателя и землей должны устанавливаться последовательные RC – цепочки с параметрами R = 50 Ом и С = 0,25 мкФ. Между зажимами и землей у электродвигателей выше 1000 кВт дополнительно к RC – цепочке должны устанавливаться ОПН для соответствующего класса напряжения.

3) Для электрооборудования напряжением 6 – 10 кВ с нормальной изоляцией (маслонаполненные трансформаторы) никаких дополнительных средств защиты не требуется.

Преимуществами ОПН являются возможность глубокого ограничения перенапряжений, в том числе междуфазных, малые габариты, позволяющие использовать их в качестве опорных изоляционных колонн, большая пропускная способность. Уровень ограничения коммутационных перенапряжений с помощью ОПН составляет (1,65 ÷ 1,8) Uф.

Ограничители перенапряжений выбираются по номинальному напряжению, которое должно быть равно номинальному напряжению сети.

Для защиты асинхронных электродвигателей от коммутационных перенапряжений принимается ограничитель типа ОПН – 6/7,2 – 10(I), где 6 – класс напряжения сети, кВ; 7,2 – максимальное действующее длительное рабочее напряжение ограничителя, кВ; 10 – номинальный разрядный ток, кА; (I) – группа разрядного тока (по устойчивости к импульсу большой длительности).

Трансформаторы тока выбираются по классу напряжения и максимальному рабочему току. Номинальный ток должен быть как можно ближе к рабочему, так как недогрузка первичной обмотки приводит к увеличению погрешностей. Также трансформаторы тока выбираются по конструкции и классу точности и проверяются по динамической устойчивости, по термической устойчивости и по вторичной нагрузке.

Для выбора и проверки трансформаторов тока составляем таблицу подключаемых к ним приборов, определив для них необходимые классы точности. Трансформаторы тока, предназначенные для для питания счетчиков электроэнергии, должны иметь класс точности не ниже 0,5. Допускается для этой цели использование ТТ класса точности 1,0, но при условии, что фактическая погрешность соответствует классу 0,5 /9, с. 322, п.33.2.5./. Класс измерительных трансформаторов устанавливают в зависимости от класса приборов: для подключения приборов классов1,0 и 1,5 -- трансформаторы класса 0,5. / 11, с.76, табл.1.6.1./

Устанавливаемые приборы принимаются в соответствии с таблицами 4.11 и П 4.7 /10/. Значения мощности, потребляемой приборами, приведены в таблице 7.

 

Таблица 7 – Приборы, подключаемые к трансформатору тока ввода КЛ

Наименование прибора

Тип

прибора

Нагрузка на фазу, ВА
Фаза А Фаза В Фаза С
Амперметр Э-377 0,5 0 0,5
Счетчик Р СА4-И682 2,5 0 2,5
Счетчик Q СР4-И689 2,5 0 2,5
Итого: 5,5 0 5,5

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

рефераты
Новости