рефераты рефераты
Главная страница > Дипломная работа: Реконструкция СЭС обогатительной фабрики  
Дипломная работа: Реконструкция СЭС обогатительной фабрики
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Реконструкция СЭС обогатительной фабрики

Произведём расчёт оптимальной мощности компенсирующих устройств на РУ-1.

Необходимая мощность компенсирующих устройств на РУ –1 определяется исходя из баланса между генерируемой и потребляемой реактивными мощностями:


,                             (22)

где Qку – мощность компенсирующих устройств, квар;

Qг.с – мощность, выдаваемая системой, квар;

Qн – мощность нагрузки, квар.

Реактивная мощность нагрузки на РУ – 1 определяется как сумма нескомпенсированной реактивной мощности со стороны 0,4 кВ и потребляемой реактивной мощности асинхронными двигателями.

Нескомпенсированная реактивная мощность со стороны 0,4 кВ, определенная ранее, равна Qнеск.04 – 3200 квар.

Реактивная мощность АД определяется по формуле:

,                               (23)

где QадS – потребляемая реактивная мощность всех АД, квар;

Рад – активная мощность одного АД, кВт;

tgfад – коэффициент мощности АД, равный для этой модели

 tgfад = 0,484;

Nад – количество АД.

.

Реактивная мощность потребления на РУ – 1:

.     (24)

Необходимая мощность КУ на РУ – 1:


,        (25)

где Рру1 – активная мощность нагрузки на РУ – 1 (определена в разделе 1).

Мощность КУ на одну секцию:

,                               (26)

где Nс – количество секций на РУ- 1.

Принимается для установки на одну секцию комплектное компенсирующее устройство УКЛ56-6,3-450У3.

Полная мощность КУ на РУ – 1:

.

Полная некомпенсированная реактивная мощность на РУ – 1:

,                   (27)

.

Выбор кабельных линий по нагреву длительно допустимым током

Для обеспечения нормальных условий работы линии надо выбирать такое сечение проводника для которого допустимый ток больше или равен наибольшему току в линии.

Сечения жил кабелей по нагреву длительным расчётным током. При этом должно соблюдаться соотношение

Ip ≤ Кп1 × Кп2 × Iд,                                         (28)

где    Кп1 – поправочный температурный коэффициент;

Кп2 – поправочный коэффициент, зависящий от количества параллельно прокладываемых кабелей и от расстояния между ними.

Iд – допустимый ток для проводника принятой марки и условий его прокладки.

Значения допустимых длительных токовых нагрузок составлены для нормальных условий прокладки проводников: температура воздуха +25 °С, земли +15 °С и при условии что в траншее уложен только один кабель.

Если монтаж кабелей выполнен на лотках плотной группой, то поправочный коэффициент Кп2 можно найти по формуле /9 с.18/:

,                                     (29)

где    n – общее число кабелей в группе;

m – число слоёв в группе;

А – для небронированных кабелей А = 1, а для бронированных соответственно при однослойной, двухслойной и трёхслойной прокладке А = 1,08; 1,15; 1,2.

Коэффициент Кп1 можно найти по формуле:

,                                         (30)

где    Тм – максимально допустимая температура жилы;

Т01 – расчётная температура окружающей среды;

Т02 – изменённая температура окружающей среды, для которой необходимо пересчитать ток нагрузки.

Iдоп ≥ Iнб,                                            (31)

При проверке на нагрев принимается получасовой максимум тока наибольший из средних получасовых токов, т. е. Iнб – это наибольший из средних за полчаса токов данной линии. Для ВЛ проверяются нормальные, послеаварийные и ремонтные режимы.

Для кабельных линий до 10 кВ можно превысить Iдоп при перегрузках или авариях, если наибольший ток предварительной нагрузки линии в нормальном режиме был не более 80% допустимого /6, табл. 1.3.1/, т. е. при условии

0,8Iдоп ≥ Iнб,                                       (32)

В послеаварийных режимах кабельных линий перегрузка допускается до 5 суток и определяется условием

KавIдоп ≥ Iав.нб,                                              (33)

где    Iав.нб - наибольший из средних получасовых токов в послеаварийном режиме;

Kав – коэффициент перегрузки в послеаварийном режиме, показывающий на сколько можно превышать Iдоп.

В зависимости от условий прокладки кабеля, предварительной нагрузки в нормальном режиме и длительности наибольшей нагрузки Кав определяется по /6, табл. 1.3.1/.

Выбор осуществим на примере КЛ соединяющей РУ-1 и КТП-1 тремя фидерами.

Кабель типа АВВГ (3х240) имеет сечение 240 мм2, проложен в воздухе при температуре 10°С, длительно допустимый ток в соответствии с /7, табл. 7.10/ Iдоп.табл = 470 А, а допустимая температура Θдоп = 65°С.

Расчеты представлены в приложении 5.

Результаты проверка остальных кабельных линий сведена в таблицу 4.



Таблица 4 – Выбор кабельных линий по условиям нагрева в нормальном и послеаварийном режимах


Расчёт токов короткого замыкания И ВЫБОР высоковольтного оборудования

Расчёт токов короткого замыкания в сети 6 кВ

Коротким замыканием называют всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы электрическое соединение различных точек электроустановки между собой или с землей, при котором токи в аппаратах и проводниках, примыкающих к месту соединения, резко возрастают, превышая, как правило, расчетные значения нормального режима.

При расчете токов коротких замыканий в электроустановках переменного тока напряжением свыше 1 кВ допускается:

1.  Не учитывать сдвиг по фазе ЭДС различных синхронных машин и изменение их частоты вращения, если продолжительность КЗ не превышает 0,5 с;

2.  Не учитывать межсистемные связи, выполненные с помощью электропередачи (вставки) постоянного тока;

3.  Не учитывать поперечную емкость воздушных линий электропередачи напряжением 110 – 220 кВ, если их длина не превышает 200 км, и напряжением 330 – 500 кВ, если их длина не превышает 150 км;

4.  Не учитывать насыщение магнитных систем электрических машин;

5.  Не учитывать ток намагничивания трансформаторов и автотрансформаторов;

6.  Не учитывать влияние активных сопротивлений различных элементов исходной расчетной схемы на амплитуду периодической составляющей тока КЗ, если активная составляющая результирующего эквивалентного сопротивления расчетной схемы относительно точки КЗ не превышает 30% от индуктивной составляющей результирующего эквивалентного сопротивления;

7.  Приближенно учитывать затухание апериодической составляющей тока КЗ, если исходная расчетная схема содержит несколько независимых контуров;

8.  Приближенно учитывать электроприемники, сосредоточенные в отдельных узлах исходной расчетной схемы;

9.  Принимать численно равными активное сопротивление и сопротивление постоянному току любого элемента исходной расчетной схемы.

При расчете начального действующего значения периодической составляющей тока трехфазного КЗ в электроустановках напряжением свыше 1 кВ в исходную расчетную схему должны быть введены все синхронные генераторы и компенсаторы, а также синхронные и асинхронные электродвигатели мощностью 100 кВт и более, если между электродвигателями и точкой КЗ отсутствуют токоограничивающие реакторы или силовые трансформаторы.

При расчете начального действующего значения периодической составляющей тока КЗ аналитическим методом по принятой исходной расчетной схеме предварительно составляется эквивалентная схема замещения, в которой асинхронные машины представляются приведенными к базисной ступени напряжения сверхпереходными сопротивлениями и сверхпереходными ЭДС.

Параметры схемы замещения определяются в именованных единицах относительно шин 6 кВ.

Сопротивление системы при заданном токе отключения выключателя в начале ВЛ 110 кВ Iотк.ном = 3,25 кА:

                                               (34)

Индуктивное сопротивление ВЛ 110 кВ приведённое к шинам 6 кВ.

,                                    (35)

Сопротивления обмоток трехобмоточного трансформатора рассчитываются по формулам:

Активное

,            (36)

где ΔРк – потери в трансформаторе, МВт;

Sном.т – мощность трансформатора, МВА.

Индуктивное:

,                                        (37)

где ик.в – напряжение короткого замыкания обмотки ВН, %.

Сверхпереходное индуктивное сопротивление асинхронного электродвигателя определяется по формуле /2, с.120, табл. 2.41/:

,                                            (38)

где Sад.ном – номинальная мощность асинхронного электродвигателя, МВА.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

рефераты
Новости