рефераты рефераты
Главная страница > Дипломная работа: Некоторые линейные операторы  
Дипломная работа: Некоторые линейные операторы
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Некоторые линейные операторы

2)  существует ограниченный оператор (А – λI)-1, то есть λ есть регулярная точка.

В бесконечном пространстве имеется еще и третья возможность, а именно:

3)  оператор (А – λI)-1 существует, то есть уравнение Ах=λх имеет лишь нулевое решение, но этот оператор не ограничен.

Введем следующую терминологию. Число λ мы назовем регулярным для оператора А, действующего в линейном нормированном пространстве Е, если оператор (А – λI)-1, называемый резольвентой оператора А, определен на всем пространстве Е и непрерывен. Совокупность всех остальных значений λ называется спектром оператора А. Спектру принадлежат все собственные значения оператора А, так как, если (А – λI)х=0 при некотором х≠0, то оператор (А – λI)-1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, то есть совокупность тех λ, для которых (А – λI)-1 существует, но не непрерывен, называется непрерывным спектром. Итак, каждое значение λ является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.

Определение 8. Оператор , где  – регулярная точка оператора А, называется резольвентой[6] оператора А и обозначается  (или ).

Теорема 5. Пусть  – линейный непрерывный оператор,  его регулярные числа. Тогда .

Доказательство. Умножим обе части равенства на : (==. С другой стороны  получим . Так как числа  – регулярные для оператора А, то оператор  имеет обратный. Значит, из равенства  следует, что . Значит, утверждение теоремы верно.

т. д-на.

Примеры.

1) Рассмотрим в пространстве C[0,1] оператор умножения на независимую переменную t: Ax = tx(t).

Уравнение Аx=x принимает в этом случае вид:

tx(t) - x(t) = y(t),

решение x(t) этого уравнения есть функция, тождественно ему удовлетворяющая.

Если  лежит вне отрезка [0, 1], то уравнение Аx=x имеет при любом y(t) единственное непрерывное решение:

x(t) = y(t),

откуда следует, что все такие значения параметра  являются регулярными, и резольвента есть оператор умножения на :

R(y) = y(t).

Все значения параметра, принадлежащие отрезку[0, 1], являются точками спектра. В самом деле, пусть 0  [0, 1]. Возьмем в качестве y(t) какую-нибудь функцию, не обращающуюся в нуль в точке 0, y(0) = a  0. Для такой функции равенство (t - 0)x(t) = y(t), не может тождественно удовлетворяться ни при какой непрерывной на отрезке [0, 1] функции x(t), ибо в точке t = 0 левая часть его равна нулю, в то время как правая отлична от нуля. Следовательно, при  = 0 уравнение Аx=x не имеет решения для произвольной правой части, что и доказывает принадлежность 0 спектру оператора A. Вместе с тем ни одна точка спектра не является собственным значением, так как решение однородного уравнения (t - )x(t) = 0,   [0, 1], при любом t, отличном от , а следовательно, в силу непрерывности и при t = , обращается в нуль, т.е. тождественно равно нулю.

2) Пусть оператор А действующий из Е  Е, задается матрицей А=.

Аx =  = .

Введем обозначения:

 = y1

 = y2

x1, x2, y1, y2  E;

A - *I = , найдем определитель A - *I:

D(A - *I) =  = (2-)*(-2-) – 3 = 2 – 7;

Если определитель отличен от нуля, то есть если  не есть корень уравнения 2 – 7 = 0, следовательно, все такие значения параметра  регулярные.

Корни уравнения 2 – 7 = 0 образуют спектр:

1 = ; 2 = -;

1, 2 – собственные значения.

Найдем собственные векторы для собственных значений :

при  =  получаем:

откуда x1 = (2+)x2; 1-й собственный вектор: ((2+)x, x);

при  = - получаем:

откуда x1 = (2 - )x2 ; 2-й собственный вектор: ((2 - )x, x);


§4. Оператор умножения на непрерывную функцию

Рассмотрим пространство  непрерывных на отрезке  функций, и оператор А, заданный формулой:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости