рефераты рефераты
Главная страница > Дипломная работа: Ортогональные полиномы и кривые распределения вероятностей  
Дипломная работа: Ортогональные полиномы и кривые распределения вероятностей
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Ортогональные полиномы и кривые распределения вероятностей

Дипломная работа: Ортогональные полиномы и кривые распределения вероятностей

Санкт-Петербургский государственный университет

Факультет прикладной математики – процессов управления

Кафедра математического моделирования

энергетических систем

Карпова

Наталия

Анатольевна

ОРТОГОНАЛЬНЫЕ ПОЛИНОМЫ И КРИВЫЕ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ


Зав. Кафедрой,

профессор, доктор физ.-мат. наук                                  Захаров В. В.

Научный руководитель,

доцент, кандидат физ.-мат. наук                                     Свиркин М. В.

Рецензент,

доцент, кандидат физ.-мат. наук                                     Корников В. В.

Санкт Петербург

2003


Оглавление.

Введение…………………………………………………………………………..3

Глава 1. Система кривых Пирсона.

§ 1. Дифференциальное уравнение Пирсона…………………….………5

§ 2. Основные типы кривых Пирсона…….……………………………...8

§ 3. Переходные типы кривых Пирсона…………………………………17

Глава 2. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей.

§ 1. Получение ортогональных полиномов по способу Чебышева…...23

§ 2. Обобщение метода Грамма - Шарлье………………...…………….33

§ 3. Весовые функции и кривые распределения вероятностей…….….36

Глава 3. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

§ 1. Примеры нахождения кривых распределения вероятностей……..40

§ 2. Алгоритм вычислений...................................……...……...………...46

Заключение……………………………………………………………………..47

Литература……………………………………………………………………...48

Введение.

Математическая статистика является наукой, которая изучает соотношения, столь глубоко проникающие в суть вещей, что их можно встретить при самых различных обстоятельствах. Результаты исследований, полученные с помощью аппарата математической статистики, используются в самых различных областях науки и техники, таких как биология, медицина, анатомия, геология, экология, экономика, и т.д.

Данная дипломная работа посвящена рассмотрению двух основных задач математической статистики:

1.  получению кривой распределения вероятностей по имеющейся выборке;

2.  нахождению зависимости между двумя случайными величинами, заданными своими выборками.

Для решения первой задачи используются различные методы. В данной работе рассмотрен метод Карла Пирсона, представителя английской школы статистики. Им было получено дифференциальное уравнение

,

а так же введен критерий æ (каппа Пирсона), с помощью которого Пирсон классифицировал решения этого дифференциального уравнения и представил их в виде двенадцати типов.

Позже в своих теоретических исследованиях Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения данной задачи используется метод Пирсона нахождения кривой распределения.

Для решения второй задачи используется метод П.Л. Чебышева, создателя Санкт – Петербургской математической школы. В статистике имя знаменитого русского математика П. Л. Чебышева (1821-1894) известно главным образом по так называемому неравенству Чебышева, которое он предложил для распределения вероятностей, и которое имеет силу для любого статистического распределения численностей.

Однако за последнее время в статистике всё большее значение приобретают ортогональные полиномы Чебышева, которые имеют особое значение при определении множественной и криволинейной регрессии и при вычислении коэффициентов обобщённой функции нормального распределения вероятностей.

Чебышев предложил общую интерполяционную формулу, при которой возможно интерполирование в самых разнообразных случаях. Эта интерполяционная формула удовлетворяет условиям метода наименьших квадратов и выражена при помощи его ортогональных полиномов. Общая интерполяционная формула, или, иначе ряд Чебышева, предложен Чебышевым в 1855 году. Она имеет вид

 .

Таким образом в дипломной работе рассматриваются два метода:

ü метод Пирсона нахождения кривых распределения вероятностей,

ü метод Чебышева получения ортогональных полиномов,

которые были положены в основу обобщенного метода Грамма – Шарлье нахождения кривой распределения вероятностей.


Глава 1. Система кривых Пирсона.

В данной главе ставится задача нахождения закона распределения случайной величины в удобном для практического использования виде. Для ее решения рассматривается подход К. Пирсона, который является выдающимся представителем английской статистической школы.

 § 1. Дифференциальное уравнение Пирсона.

Рассмотрим случайную величину, заданную своей выборкой , таким образом, можем записать  - статистической распределение. Ставится задача нахождения закона распределения случайной величины в удобном для практического использования виде.

Метод Пирсона заключается в том, что мы рассматриваем дифференциальное уравнение Пирсона:

       (1)

и исследуем, какие решения можно получить при различных значениях параметров уравнения (1).

Общий интеграл этого уравнения представим в виде:

где

.

Значение этого неопределенного интеграла зависит от корней уравнения

   (2),

следовательно, от его дискриминанта

который можно написать в виде

,

 вводя параметр

æ.

Или иначе, величину æ можно представить в виде:

æ,

где величины  представимы через центральные моменты статистических распределений  к-го порядка, которые определяются по формуле

,

 где  есть

.

Тогда

,    .

Через величины  можно представить и величины  следующим образом [5]:

Величина æ называется критерием Пирсона (каппа Пирсона) и раз­личные значения ее дают нам следующие выводы о корнях уравнения:

А. Если æ, то  и уравнение (1) имеет вещественные корни различных знаков.

В. Если 0< æ<1, то  и уравнение (1) имеет комплексные корни.

С. Если æ>1, то  и уравнение (1) имеет вещественные корни одного знака.

Соответственно этим случаям Пирсон различает три главных типа своих кривых, которые он назвал соответст­венно типами I, IV и VI. Затем æ может равняться , что дает переходные типы кривых. Наконец, присоединяя некоторые дополнительные условия, мы можем увеличить число переходных типов. Всего система кривых Пирсона заключает 12 типов и нормальную кривую.

В своих разработках Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения задачи идентификации используется метод Пирсона.


§ 2. Основные типы кривых Пирсона.

В этом параграфе будут рассмотрены основные типы кривых распределения вероятностей, предложенные и классифицированные Пирсоном.

Тип I.

 Пусть æ<0. Тогда

 и уравнение (2) имеет вещественные корни различных знаков: , так что можем записать

.

Тогда правая часть уравнения  (1)  может быть представлена в виде:

,

где

.

Пусть еще

.

Тогда уравнение (1) перепишется в виде

  и общий интеграл его можно представим в виде

,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9

рефераты
Новости