рефераты рефераты
Главная страница > Дипломная работа: Численное решение уравнения Шредингера средствами Java  
Дипломная работа: Численное решение уравнения Шредингера средствами Java
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Численное решение уравнения Шредингера средствами Java

Традиционно для решении задачи о нахождении собственных значений уравнения Шредингера используется метод пристрелки. Идея метода пристрелки состоит в следующем. Допустим, в качестве искомого значения ищется одно из связанных состояний, поэтому в качестве пробного начального значения энергии выбираем отрицательное собственное значение. Проинтегрируем уравнение Шредингера каким-либо известным численным методом на интервале . По ходу интегрирования от  в сторону больших значений  сначала вычисляется решение  , экспоненциально нарастающее в пределах классически запрещенной области. После перехода через точку поворота , ограничивающую слева область движения разрешенную классической механикой, решение уравнения становится осциллирующим. Если продолжить интегрирование далее за правую точку поворота , то решение становится численно неустойчивым. Это обусловлено тем, что даже при точном выборе собственного значения, для которого выполняется условие , решение в области  всегда может содержать некоторую примесь экспоненциально растущего решения, не имеющего физического содержания. Отмеченное обстоятельство является общим правилом: интегрирование по направлению вовнутрь области, запрещенной классической механикой, будет неточным. Следовательно, для каждого значения энергии более разумно вычислить еще одно решение , интегрируя уравнение (3.1) от  в сторону уменьшения . Критерием совпадения данного значения энергии является совпадение значений функций  и  в некоторой промежуточной точке . Обычно в качестве данной точки выбирают левую точку поворота . Так как функции , являются решениями однородного уравнения (3.1), их всегда можно нормировать так, чтобы в точке  выполнялось условие . Помимо совпадения значений функций в точке  для обеспечения гладкости сшивки решений потребуем совпадения значений их производных

(3.5)


Используя в (17) простейшие левую и правую конечно-разностные аппроксимации производных функций ,  в точке , находим эквивалентное условие гладкости сшивки решений:

(3.6)

Число  является масштабирующим множителем, который выбирается из условия  Если точки поворота отсутствуют, т.е. E>0, то в качестве  можно выбрать любую точку отрезка . Для потенциалов, имеющих более двух точек поворота и, соответственно, три или более однородных решений, общее решение получается сшивкой отдельных кусков. В описанном ниже документе, для интегрирования дифференциального уравнения второго порядка мы используем метод Нумерова. Для получения вычислительной схемы аппроксимируем вторую производную трехточечной разностной формулой:

(3.7)

Из уравнения (3.1) имеем

(3.8)

Подставив (3.7) в (3.8) и перегруппировав члены, получаем

(3.9)


Разрешив (3.9) относительно  или , найдем рекуррентные формулы для интегрирования уравнения (3.1) вперед или назад по  c локальной погрешностью . Отметим, что погрешность данного метода оказывается на порядок выше, чем погрешность метода Рунге-Кутта четвертого порядка. Кроме того данный алгоритм более эффективен, потому что значение функции  вычисляются только в узлах сетки. Для нахождения численного решения оказывается удобным провести обезразмеривание уравнения (3.1), используя в качестве единиц измерения расстояния  - ширину потенциальной ямы, в качестве единиц измерения энергии - модуль минимального значения потенциала . В выбранных единицах измерения уравнение (3.1) имеет вид

(3.10)

где

   (3.11)

Таким образом, вычислительный алгоритм для нахождения собственных функций и собственных значений уравнения Шредингера реализуется следующей последовательностью действий:

1. Задать выражение, описывающее безразмерный потенциал .

2. Задать значение .

3. Задать пространственную сетку, на которой проводится интегрирование уравнения (3.1).

4. Задать , .

5. Задать начальное значение энергии .

6. Задать конечное значение энергии .

7. Задать шаг изменения энергии .

8. Проинтегрировать уравнение (3.1) для значения энергии  слева направо на отрезке .

9. Проинтегрировать уравнение (3.1) для значения энергии  справа налево на отрезке .

10. Вычислить значения переменной  для значения энергии .

11. Увеличить текущее значение энергии на : .

12. Проинтегрировать уравнение (3.1) для значения энергии  слева направо на отрезке .

13. Проинтегрировать уравнение (3.1) для значения энергии  справа налево на отрезке .

14. Вычислить значения переменной  для значения энергии .

15. Сравнить знаки ,

16. Если  и , увеличить текущее значение энергии на  и повторить действия, описанные в пп. 8-17.

17. Если , уточнить методом линейной интерполяции.

18. Если , повторить действия, описанные в пп. 8-18.

19. Если , закончить вычисления.[5]


4. Программная реализация численных методов средствами Java

4.1 Обзор языка программирования Java

Java связан с C++, который является прямым потомком С. Многое в характере Java унаследовано от этих двух языков. От С Java получил его синтаксис. На многие из объектно-ориентированных свойств Java повлиял C++. Некоторые из определяющих характеристик Java происходят от его предшественников. Кроме того, создание Java глубоко внедрилось в процессы усовершенствования и адаптации, которые проявились в языках машинного программирования в течение последних трех десятилетий. Каждое новшество в проекте языка управлялось потребностью решить фундаментальную проблему, с которой не справились предшествующие языки. Java не является исключением.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости