рефераты рефераты
Главная страница > Дипломная работа: Численное решение уравнения Шредингера средствами Java  
Дипломная работа: Численное решение уравнения Шредингера средствами Java
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Численное решение уравнения Шредингера средствами Java

(2.1)

(2.2)


Если соотношение (2.1) использовать в качестве определения  и применить к нему операцию , то с учетом определения 3-мерной -функции,

,

в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

Положим далее

,(2.3)

тогда для Фурье-образа потенциала будем иметь

(2.4)

Предполагая, что волновая функция  удовлетворяет уравнению Шредингера

(2.5)

Подставляя сюда вместо  и  соответственно выражения (2.1) и (2.3), получаем


В двойном интеграле перейдем от интегрирования по переменной  к интегрированию по переменной , а затем эту новую переменную вновь обозначим посредством . Интеграл по  обращается в нуль при любом значении  лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

.(2.6)

Это и есть искомое интегральное уравнение с Фурье-образом потенциала  в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал  должен убывать на больших расстояниях по меньшей мере как , где .

Необходимо отметить, что из условия нормировки

 (2.7)

следует равенство

.(2.8)

Это можно показать, подставив в (2.7) выражение (2.1) для функции :

.

Если здесь сначала выполнить интегрирование по , то мы без труда получим соотношение (2.8).[2]


2. Методы численного решения нестационарного уравнения Шредингера

2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

Нестационарное уравнение Шредингера, определяющее эволюцию волновой функции во времени, представляет собой дифференциальное уравнение первого порядка по времени и имеет следующий вид

(3.1)

где оператор полной энергии системы. Для одномерного случая


Общее решение уравнения (1) формально можно записать в виде

(3.2)

где - волновая функция системы в момент времени

- оператор эволюции (пропагатор).

Особенностью выражения (3.2) является то, что в показателе экспоненты стоит оператор. Определить действие оператора эволюции на волновую функцию можно, например, разложив ее по собственным функциям оператора  . Так, в случае дискретного спектра  выражение для волновой функции в произвольный момент времени имеет вид

(3.3)

Аналогичное выражение может быть получено и для непрерывного спектра.

Разложение (3.3) удобно использовать в тех случаях, когда решения стационарного уравнения Шредингера для конкретной задачи являются известными. Но к сожалению круг таких задач очень ограничен. Большинство современных численных методов решения уравнения (3.1) основаны на использовании различных аппроксимаций оператора эволюции . Так, например, разложение оператора эволюции в ряд Тейлора с сохранением первых двух членов дает следующую схему

,(3.4)


здесь номер шага по времени. Существенным недостатком этого алгоритма является необходимость знать волновую функцию в моменты  и . Кроме того, для оценки действия оператора  на функцию  нужно вычислять вторую производную по координате. Простейшая конечно-разностная аппроксимация второй производной

(3.5)

дает неудовлетворительный результат. (См. программный блок 1)[3]

2.2 Преобразование Фурье

Начнем с комплексного ряда Фурье

Рассмотрим случай L.Тогда сумму можно преобразовать в интеграл следующим образом: определим и =g(y).Так как  возрастает каждый раз на единицу ,то

где .

Таким образом, полученные выше формулы приобретают вид


  (4.1)

Величина называется преобразованием Фурье от  и наоборот. Положение множителя  довольно произвольно; часто величины  и  определяют более симметрично:

 

 (4.2)

Выражения (4.1) или (4.2) можно скомбинировать следующим образом:

(4.3)

Равенство (4.3) удовлетворяется для любой функции  это позволяет сделать интересный вывод об интеграле  как функции . Он равен нулю всюду, кроме точки , а интеграл от него по любому промежутку ,включающему , равен единице, т.е. эта функция имеет бесконечно высокий и бесконечно узкий пик в точке .

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости