рефераты рефераты
Главная страница > Дипломная работа: Численное решение уравнения Шредингера средствами Java  
Дипломная работа: Численное решение уравнения Шредингера средствами Java
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Численное решение уравнения Шредингера средствами Java

Дипломная работа: Численное решение уравнения Шредингера средствами Java

Численное решение уравнения Шредингера средствами Java


Содержание

Введение

1. Уравнение Шредингера и физический смысл его решений

1.1 Волновое уравнение Шредингера

1.2 Волновые функции в импульсном представлении

2. Методы численного решения нестационарного уравнения Шредингера

2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера

2.2 Преобразование Фурье

2.3 Метод аппроксимации оператора эволюции (split-operator method)

3. Методы численного решения стационарного уравнения Шредингера

3.1 Метод Нумерова

4. Программная реализация численных методов средствами Java

4.1 Обзор языка программирования Java

4.2 Элементы программирования Java 2 используемые в работе

Заключение

Список использованных источников


Введение

Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.


1. Уравнение Шредингера и физический смысл его решений

1.1 Волновое уравнение Шредингера

Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде

(1.1)

где Н — оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора  определяется свойствами системы. Для нерелятивистского движения частицы массы  в потенциальном поле U(r) оператор  действителен и представляется суммой операторов кинетической и потенциальной энергии частицы

(1.2)

Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.

Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.

Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов

H,(1.3)

то переход к классическому уравнению Гамильтона—Якоби для функции действия S

H

можно получить из (1.3) формальным преобразованием

,

Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования

, (1.4)

если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию  операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.

Легко убедиться, что уравнение (1.1) удовлетворяется при  волновой функцией

,

описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.

Покажем, что из уравнения (1.1) следует важное равенство

,(1.5)

указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию  и вычтем из первого полученного уравнения второе; тогда находим

,(1.6)

Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора , получаем (1.5).

Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)

, (1.7)

где  является плотностью вероятности, а вектор

(1.8)

можно назвать вектором плотности тока вероятности.

Комплексную волновую функцию  всегда можно представить в виде

где  и — действительные функции времени и координат. Таким образом, плотность вероятности

,

а плотность тока вероятности

.(1.9)

Из (1.9) следует, что j = 0 для всех функций , у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций .

Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции  состояние системы можно описать двумя вещественными функциями  и , удовлетворяющими двум связанным уравнениям. Например, если оператор Н — вещественный, то, подставив в (1.1) функцию  и отделив вещественную и мнимую части, получим систему двух уравнений

, ,

при этом плотность вероятности и плотность тока вероятности примут вид

, . [1]

1.2 Волновые функции в импульсном представлении.

Фурье-образ  волновой функции  характеризует распределение импульсов в квантовом состоянии . Требуется вывести интегральное уравнение для  с Фурье-образом потенциала в качестве ядра.

Решение. Между функциями  и  имеются два взаимно обратных соотношения.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости