рефераты рефераты
Главная страница > Дипломная работа: Численное решение уравнения Шредингера средствами Java  
Дипломная работа: Численное решение уравнения Шредингера средствами Java
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Численное решение уравнения Шредингера средствами Java

Обычно определяют  (Дирака)  следующим образом:

   

   (4.4)


Из этих уравнений следует, что

 (4.5)

для любой функции , в случае если интервал интегрирования включает точку .

Проделанные выше операции над интегралами Фурье показали, что

 (4.6)

Это интегральное представление функции.

Дельта – функцию можно использовать, чтобы выразить важный интеграл  через преобразование Фурье (4.1) от :

(4.7)

Это равенство называется теоремой Парсеваля. Она полезна для понимания физической интерпретации преобразования Фурье для , если известен физический смысл .

Предположим, что  четная функция. Тогда


Заметим теперь, что -- также четная функция. Поэтому

(4.9)

Функция и ,определенные теперь только для положительных  и , называются косинус - преобразованиями Фурье по отношению друг к другу.

Рассматривая преобразования Фурье нечетной функции, получаем аналогичные соотношения Фурье между синус - преобразованиями Фурье:

 (4.10)

Если нужно, можно симметризовать выражения, поставив множитель  перед каждым интегралом (4.7)-(4.10). [4]

2.3 Метод аппроксимации оператора эволюции (split-operator method)

Рассмотрим более подробно другой метод аппроксимации оператора эволюции, в котором отсутствуют недостатки, свойственные рассмотренной выше схеме. Здесь оператор эволюции аппроксимируется симметричным расщеплением оператора кинетической энергии (split-operator method)

(5.1)


Основная погрешность данной аппроксимации связана с некоммутативностью операторов кинетической и потенциальной энергии. Вычисление действия такого оператора на волновую функцию включает следующие шаги. Преобразованная в импульсное представление волновая функция умножается на  и преобразуется обратно в координатное представление, где умножается на . Полученный результат снова преобразуется в импульсное представление, умножается на  преобразуется обратно в координатное представление. На этом один шаг по времени завершается. Переход от одного представления к

другому осуществляется посредством преобразования Фурье.

В данной курсовой работе используется Гауссов волновой пакет вида , а также ступенчатый потенциал. Сначала преобразуем нашу волновую функцию из координатного представления в импульсное

 ,(5.2)

затем умножим полученный результат на . На этом завершается половина временного шага. Полученный результат снова преобразуется в координатное представление

(5.3)

и умножается на . После чего вновь преобразуется в импульсное представление


 (5.4)

и умножается на . Завершается шаг по времени еще одним преобразованием полученной волновой функции в координатное представление

.(5.5)

Один шаг по времени завершен.

В данной работе этот метод реализован в среде Java, ниже приведены программный блок и полученные графики поведения волновой функции в различные моменты времени.

Важная особенность этого метода заключается в том, что действие каждого из операторов оценивается в их соответствующем локальном представлении.

С методической точки зрения ценность нестационарного подхода состоит в существенно большей наглядности и информативности результатов, по сравнению с результатами решения стационарного уравнения Шредингера. Круг задач, которые могут быть рассмотрены на основе решения нестационарного уравнения Шредингера очень разнообразен.

Для иллюстрации вышесказанного рассмотрим задачу о движении частицы в поле потенциального барьера. Хотя стационарный подход позволяет определить коэффициенты прохождения и отражения частицы он, однако, не позволяет рассмотреть реальную пространственно-временную картину движения частицы через потенциальный барьер, которая является существенно нестационарной. Рассмотрение задачи на основе решения нестационарного уравнения Шредингера позволяет не только сопоставить классический и квантовый подход к проблеме, но и получить ответы на ряд вопросов, представляющих значительный практический интерес (например, длительность процесса туннелирования, скорости прошедших и отраженных частиц и т.д.). Ниже мы приводим результаты решения нестационарного уравнения Шредингера для данной задачи. Начальное состояние частицы задано в виде пакета гауссовой формы, движущегося в направлении области действия потенциала. На графиках представлена временная картина туннелирования такого пакета через потенциальный барьер прямоугольной формы в виде "мгновенных снимков" волнового пакета в разные моменты времени. Как видно, при попадании пакета в область действия потенциала его форма нарушается в результате формирования отраженного волнового пакета и его интерференции с падающим на препятствие пакетом. Через некоторое время формируются два пакета: отраженный и прошедший через препятствие. Движение падающего и отраженного пакета можно сопоставить с движение классической частицы, положение которой совпадает с максимумом в распределении вероятности. В случае протяженного потенциала отраженный пакет "отстает" от отраженной от барьера классической частицы. Физически это связано с тем, что пакет частично проникает в классически запрещенную область, в то время как в классике отражение происходит строго в точке скачка потенциала. Образование же прошедшего пакета представляет собой сугубо квантовый эффект не имеющий классических аналогий.[3]


3. Методы численного решения стационарного уравнения Шредингера

3.1 Метод Нумерова

Рассмотрим решения одномерного стационарного уравнения Шредингера (3.1) частицы, движущейся в одномерном потенциале U(x).

(3.1)

Будем при этом полагать, что его форма имеет потенциала, представленного на рис.1: в точках xmin, xmax потенциал становится бесконечно большим. Это означает, что в точках xmin, xmax расположены вертикальные стенки, а между ними находится яма конечной глубины.

25.gif

Рисунок 1.

Для удобства дальнейшего решения запишем уравнение Шредингера (3.1) в виде:

(3.2)


Где

(3.3)

С математической точки зрения задача состоит в отыскании собственных функций оператора, отвечающим граничным условиям

(3.4)

и соответствующих собственных значений энергии E.

Так как при  и  при , , то можно ожидать, что собственному решению данной задачи соответствует собственная функция, осциллирующая в классически разрешенной области движения  и экспоненциально затухающим в запрещенных областях, где  ,, при ,  . Так как все состояния частицы в потенциальной яме оказываются связанными (т.е. локализованными в конечной области пространства), спектр энергий является дискретным. Частица, находящаяся в потенциальной яме конечных размеров  при ,  при , имеет дискретный спектр при  и непрерывный спектр при .

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости