рефераты рефераты
Главная страница > Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах  
Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах

В связи с изложенным при разработке релаксационностойких материалов и выборе режима их термической обработки большое внимание следует уделять повышению сопротивления ползучести не только на установившейся, но и на неустановившейся стадии.


2 Методы изучения релаксации напряжений

Процесс релаксации состоит из уменьшения упругих напряжений (деформаций) и накопления пластической деформации. Однако в отличие от пластического деформирования или ползучести пластическая деформация при релаксации незначительная и в объеме кристаллического тела она создается за счет весьма малых сдвигов (тонкое скольжение) по большому числу плоскостей скольжения, распределенных неравномерно, что затруд­няет их микроскопическое изучение. Поэтому при исследовании релаксации напряжений в основном базируются на определении изменений упругой деформации.

 

2.1 Релаксация при растяжении и сжатии

Известны различные методы изучения релаксации напряжений в условиях одноосного растяжения, которые отличаются, в частности, тем, является ли разгружение образца в процессе испытаний необходимым для периодического измерения остаточного напряжения или нет.

Еще в 1953 г. Б.М. Ровинским и В.Г. Лютцау [12] был разработан метод испытаний, при котором периодически измеряют поперечное сечение образца, начальная продольная деформация которого остается постоянной.

Поперечную деформацию в испытаниях при комнатной температуре измеряют с помощью специальных чувствительных датчиков, а при повышенных температурах — методом обратных рентгеносъемок поперечной упругой деформации решетки.

Испытания проводят следующим образом: ненапряженный образец вместе с устройством для нагружения перед испытанием устанавливают в рентгеновской камере для определения периода решетки. Затем образец нагружают, и блок с образцом устанавливают в камере, где периодически измеряют упругую деформацию решетки.

В работе был предложен другой рентгеновский метод изучения релаксации напряжений. После определения периода решетки в исходном ненапряженном состоянии образец быстро растягивают до заданной вели­чины пластической деформации, разгружают, а затем в нем периодически определяют период решетки прецизионной рентгеновской съемкой. Этот метод основан на том, что в деформированном металлическом образце при разгрузке возникают остаточная деформация решетки обратного знака и сжимающие ориентированные микронапряжения, которые релаксируют подобно напряжениям первого рода.

Для исследования релаксации напряжений при растяжении проводят испытания шпилек и болтов в обоймах и образцов на специальных релаксационных машинах.

Методики испытания в обоймах различной конструкции различаются степенью равномерности нагрева обоймы и образца, точностью измерения остаточных деформаций, точностью поддержания постоянной длины образца вовремя испытания, производительностью, используемыми приспособлениями для создания начального натяжения. Неравномерность нагрева обоймы и болта может вызывать местные перенапряжения болта. Недостаточное различие сечений обоймы и образца приводит к снижению жесткости напряженного состояния.

Кроме того, почти для всех методов испытаний в обоймах характерно нагружение при комнатной температуре и развитие процессов релаксации на первом этапе при переменной (повышающейся) температуре.

Одну из первых конструкций приспособлений для испытаний шпилек и болтов на релаксацию предложил Мохель. При каждом последующем нагружении напряжение в испытуемой шпильке доводили до первоначальной величины. Таким образом, условия испытания в этих опытах отличались от условий чистой релаксации. Методика Т.И. Волковой свободна от этого недостатка и позволяет проводить измерение оставшихся напряжений с точностью до ~ 46 МН/м2 (0,4 кг/мм2). Измерение длины образца производят обычно на универсальном микроскопе. Для растяжения образца до заданной величины деформации используют специальное приспособление (ИР-4Р), представляющее собой комбинацию двух гаечных ключей, соединенных винтом, на котором находится рычаг с рукояткой. Полный оборот рукоятки создает натяжение 40 МН/м2 (4 кг/мм2). Нагревательное устройство (ИР-3) рассчитано для работы в интервале 400—700° С. Однако при использовании это­го метода возможны перенапряжения образца за счет неравномерного нагрева образца и обоймы.

Более производительный метод испытаний моделей болтовых соединений описан Б. М. Рахманом, предложившим конструкцию многоместной оправки. В этом случае образцы прогреваются несколько быстрее обоймы, в связи, с чем исключается возможность их перена­пряжений.

Для изучения чистой релаксации напряжений на испытательной машине необходимо задавать и поддержи­вать заданную полную деформацию образца, фиксировать напряжение или изменение напряжений в образце, поддерживать с определенной точностью заданную температуру образца.

Поддержание полной деформации образца постоянной представляет значительные трудности в связи с податливостью системы и трудностями создания соответствующей системы разгрузки. Практически же условия чистой релаксации при испытаниях на машинах не реализуются. Для обеспечения указанных требований машины имеют нагружающее устройство, систему для поддержания деформации, систему для измерения напряжений и термостат (нагревательное устройство).

Основные параметры машин следующие:

1) диапазон изменения напряжений и деформаций;

2) диапазон температуры и точность ее поддержания;

3) точность измерений и поддержания нагрузки;

4) скорость нагружения и разгружения;

5) плавность изменения нагрузки;

6) надежность при длительной работе.

Известны различные виды нагружения: с помощью пружины, подвижного груза, груза, величина которого изменяется в процессе испытания (шары, вода), гидравлического пресса и др. Каждый из указанных видов обладает специфическими достоинствами и недостатками.

Так, например, машины с грузом, перемещающимся по одному рычагу, не позволяют проводить испытания при больших начальных пластических деформациях образца, закрепленного с одной стороны. Машины с нагрузкой, уменьшающейся во время испытания, могут производить лишь разгружение образца. Нагружение пружиной требует серьезного внимания к стабильности упругих свойств самой пружины.

Помимо нагружающей системы, релаксационные машины различаются системами, обеспечивающими поддержание заданной деформации образца. Эти системы, как правило, состоят из устройства, воспринимающего и увеличивающего деформацию образца (увеличитель деформации); устройства, вырабатывающего электрические импульсы при отклонении размеров образца, и, наконец, релейной системы, управляющей электродвигателем нагружающей системы.

Шевенар предложил рассматривать установку для измерения релаксации напряжений как замкнутую автоколебательную систему с обратной связью. В связи с этим требования, предъявляемые к релаксационным машинам, направлены на уменьшение амплитуды автоко­лебаний, что достигается увеличением жесткости частей увеличителя деформаций, повышением чувствительности системы датчика импульсов, увеличением жесткости нагружающей системы, уменьшением инерции движущихся частей машины и уменьшением трения в сочленениях нагружающей системы. На амплитуду автоколебаний влияют и такие параметры машины, как скорость нагружения и разгружения, время установления заданной скорости нагружения или разгружения после приема нагружающей системой импульса переключения.

Кинематическая схема модернизированной машины УИМ-5 представлена на рисунке 4.

Изменение длины образца О вызывает замыкание управляющих контактов контактного устройства К, связанного с экстензометром, и включение при помощи реле реверсивного электродвигателя М, который вращает червячное колесо 7. Вращение оси 6 червячного колеса передается на большой фрикционный ролик 5. На ось 4 ролика 5 намотан тросик 3, при помощи которого перемещается конец рычага 2. Конец малого плеча рычага 2 через тягу со встроенным динамометром Д соединен с концом нагружающего рычага 1. Таким образом, в зависимости от направления вращения электродвигателя конец нагружающего рычага перемещается вверх или вниз, соответственно уменьшая или увеличивая нагрузку на образец. Величина усилия регистрируется динамометром, соединенным с диаграммным механизмом, осуществляющим запись кривой релаксации напряжения.

Контактное устройство К, управляющее изменением нагрузки, имеет подвижный и два неподвижных контакта. Подвижный контакт, представляющий собой кусочек расплющенной серебряной проволоки, припаян к стрелке индикатора. Оба неподвижных контакта (небольшие серебряные пластинки) укреплены на плексигласовом стекле, заменяющем покрывающее стекло циферблата. Использование в качестве контактного устройства индикаторной головки с ценой деления 0,002 мм позволяет обеспечить постоянство замеряемой длины образца в пределах ±1 мкм при суммарном зазоре между контактами около 1 мм. Замыкание подвижного контакта с одним из неподвижных контактов вызывает вращение двигателя в ту или другую сторону.


Рисунок 4 – Кинематическая схема модернизированной машины УИМ-5

При модернизации нагружающего устройства были использованы двигатель и червячная передача, которые в машине УИМ-5 служат для вращения бункера. Асинхронный двигатель типа МШ мощностью 75 Вт снабжен переменным сопротивлением, позволяющим регулировать число оборотов. Возможность реверсирования достигается изменением схемы питания щеток двигателя. Для реверсирования нагрузки введено дополнительное реле, срабатывающее от замыкания второго неподвижного контакта. Передаточное число червячной передачи равно 100. Большой фрикционный ролик 5 представляет собой текстолитовый диск с насаженным стальным кольцом. Диаметр валика 4, на который наматывается тросик 3, равен 4,3 мм, диаметр гибкого тросика 1,5 — 2 мм. Для обеспечения фрикционного сцепления один из подшипников, в которых вращается вал 4, движется свободно в вертикальном направлении. При натяжении тросика 3 создается контактное давление между фрикционными роликами, пропорциональное натяжению.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

рефераты
Новости